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Higher Order Differentiation and Its Applications

f'(x) = 80x* + 36x
f™(x) = 240x* + 36

3. Partial Derivatives

Given a function y = f{x), the derivative f '(x), represents the rate of change of the function as x

changes. For a function of two variables, such as z = f (x,y), one variable could be changing

faster than the other variables. It will be complcfgly possible for the function to be changing

differently.

For a function of two independellt variables, z = f{x,y), the partial derivative ‘z’ with respect to x

may be found as normal rule of differentiation. The only difference is' that, whenever or

wherever the second independent variable ‘y’ appears, it will be treated as constant in every

respect. Also the partial differentiation of y can be found by treating X vzirial_)le as constant.

Notations of partial differentiation are given below:

Notations of Partial Differentiation i3 £ i

Partial derivative of z w.r.t X Q{ fx
, _ '7_ dx
Partial derivative of zw.rty | 9z | Fy

Example: Z= x* y2 —x? y‘s

Partial derivative can be defined as:-

f z = fixyy) is a function

ay’

of

two

§ az d
variables, then %

called partial derivatives of z with respect to x and y respectively, be the derivative z w.r.tx
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Higher Order Differentiation and Its Application

rules of

| All the
by keepmg Y as congt B

. : ons
. ANt and the derivative z w.rty by keeping X as €
differentiatjgy, N

. N e ated.
an be applied when partial differentiation can be calculat

Symbolically iff=f (x,¥) then

=2 f(x+ Ax3)- 1 (xa)
fx o ~Llag g e -

r= ﬂ - floy+ay)- f(x)yv)

provided these limits exist.

Example |.z=f (x,y)= x:'y+x2y2 Xy +x+y?

QJIQo
N

=3x:y+2xy2+y+l
Z a2y x40
3y X Ty +x+2y

3.1 Higher order partial derivative

For a function z = f x,y); f xX)&f (y) are the two first order partial derivatives with respect to
X and y respectively. Since ‘z° is a functipn hence f (x) and f' (y) are also a function, hence,

second order partial differentiation can also be found. g

Notations of second order partial derivatives

Partial derivatives of z

Notation |

W.ILL X twice

el

@02
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{\t rLyy firet thanx

A function has four poseible second partial

function wrt ‘s° ta

wrty twice

Higher Order Differantiation and Its Applications

A R T  IAn

ay (30 ) e Yy ‘
R O |/ S fry \
fy by Ay dr

T — S ———— o

Ty U fre |
Ar oy Ardy |

1Ce, WLy twice, w.rt, x first than y and w.et. y first then x. All derivatives

have sign (+ or ) interpretation of these signs are as follows.

derivatives ones that are 'm_m'i'né-m} differentiating

[ Partial ~Sign Imhprctﬁﬁnn
Ecn’vativc
9z * Slopes in x direction is positive
ax - Slopes in x direction is negative
' 2_23 * Slopes in x direction increases as x increases(y ;:onstam)
[ ax? - Slopes in x direction decreases as x decreases(y consfant)
i 9z - Slopes in y direction is positive
f dy - Slopes in y direction is negative |
l _6_‘_7 + Slopes in y direction increases as y increases(x constant)
dy* - Slopes iq y direction decreases as y decreases(x constant)
0“z + Slopes in x direction increases as y increases(x constant) |
dy dx - Slopes in x di:rcction decreases as y decreases(x constant) .'1
( d’z - Slopes in y direction increases as X increases(y constant) :
! axay |. Slopes in y direction decreases as x deereases(y constant) |
05 038

ol 25 0.5 40
501.61 0.5x" "y

Example z = x

08

.20z .
y " =60 lmd;‘; interprate the result
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g

9%z _ 2 08 058
3r7 = 3= (0.5xX°% "%

=(0.5) (-0.5 x % 0%

=-0.25 x5 y08 s
and x™

heisde yo.s
1 is positive; he

Since x and v are positive, positive number raised to any power is p ' f z with respect
’ i jation 0

are positive , the term -0.25 in cquation show that second order differentia

: is
; ‘ : increases when y
fo X twice is negative meaning that the slope in the x direction dccr§a3cs as x

constant.

Examplc:z=t‘(:ic,y)=J.:3y+.\:2y+2x+.\'y+.‘<4‘}’2
fx = X7+ 2x%y+ 2xy? 4y +1 ‘
fy=x"+2x% + x4 2y

frx= Gy 4257

fyy=2x7+2 45, Bt iy
firy = 3x* + dxy +1 i ooy

fyx =3x*+4xy+1 ot

B
[}

A ——— L%

Iy =fyx. ‘
The two mixed second order partial derivatives (also called as cross partial derivatives) are

always equal when fxy arnd'fyx are continuous. It is explained'b

Alexis Clairant also know as Young’s theorem,

y the following theorem given by

Theorem: Suppose f is defined on a disk D, which contains the point (a, b). If the partial |

derivatives fxy and fyx are both continuous on disk D, (hen

fxy (a, b) = fyx (a, b).

Example:- Verify Young’s theorem f(x,y) = x e—x*y?

Solution:-

b4
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Higher Order Differentiation and Its Applications
N(X,Y) = e=¥ 199 x2 5, e—xiy?
() =<2 X1y e=xy?
Now, compute the two mixed partial derivatives.
INV(Y) =2 X%y e~V Py o= ¥ R0y gyl mtY?
=6 X7y e~¥ g \‘*yle—-\ y’
fyx(x.y)= -6 x* Y c_x=yf+4[ S‘y’é;¥’?2
S Iy = fyx
Hence proved.
3.2 Partial derivative with many variables
Ifz= f(x,,‘.\-g" cieere Xo) then

— s the differentiation of the function w.r.t.x; when all the other variables x; (j#1 ) are held

&l R
Wi leey 0L

constant,
_ai= a f (x1,x2.... .xn) ' f )
6.\'1 ax1 E e
B i
dz Of (x1,x2....x1n '
and —= f )andso,on
dx; dxz : : ;

ee vanables V= f (x, Y, z) For such a function,

Suppose, there is a functlon wh:ch cons1sts of thr
ial derivatives of w.r.t x, y and z. When parttal derivative has to take with respect to

there are parti
(] mdcpcndent variables are constant.

one of x, y and z assuming other tw

In general, function consists of n variables. If Z = f (X1 X3,...Xn) then partial derivative of z

is % when all the other variables x; (#i) are held constant.

w.r.t X1
_9f _ f (x1 x2,.xI+h..xn)— £ (X1 X2, 00X wmXD)
fxi = 7,7 = Lt o I

g os—
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ation and Its Applications

Higher Order pifferenti

provided limit exists.

3 1 4
Example:- f (X, Y, z)=x"ty 1z

fx:g_(_{'_)"—z)- = 2x
ox

fy=3y*
fz =4z’
Example: Find Zxxx, ny&, Zyyy,Zyxy of the function

Z=3x(5x+7y) |

Zx=3x%(5) + (5x+7y)(6x)

= :15.\:2 +42xy |
Zxx= 90x+42y
Zxy=0+42 e i
=42}c, ' i X

ZXYx=42 o Wi b o )
; $e 20 Ui |

B P gy A

Zy= 3x2(7jj4+ L(S;{f?})(o) ; i ‘

21x2 B L
Zyyy =, b
Zyx = 42x
Zyxy =0,

Example: Fing
nd Zxxx, Zxyy, Zyyy,Zxxy of the function Z=

8 %

(9x~dy)(12x 1. 2y)
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Higher Order Differentiation and Its Applications

Zx = (9x — 4y)(12) + (12x + 2y) (9)
=108x—-48y+108x+ 18y
=216x-30y

Zxx =216

Zxyy=0

Zxxx =0

Zxy =-30

Zxyy =0

Zy = (9x-4y) (2) + (12x +2y) (-4)

= 18x — 8y -48x -8y

=-30x -16y
Zyy =-16
Zyyy =0

Loy

+y

X

Example: Find Zxx, Zyy of the fq’nction Z = TR i i | .

_ 3yW-E©
e G

Zxx=0

Ty = 3y(1)-(x+y)(3)
y (3y)?

. 2 4
Zyy=-Eaxy) =2y’

8 0+
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Higher Order Differentiation and Its Applicatio

i ‘n’ 1 bles

n C P «

: nber of times.
differentiate with respect to each variable the same nut

For three variables, according to clairaut theorem,

fu (%, ¥, 2) = fox (X,%,2)
provided with the derivatives arc continlloue. | |
The partial derivative ig approximatc equal to _thc change in"function.i.c,'
fi(X1ye. .. Xn)= fi(X1ye 2 Xiol, Xith, x,-.+| xn) fi(xi,.. X, {4 x, 1+1--...X7,;) y

There are n partial denvanves of ﬁrst order For’ each of the first order partral order derivative of

the funcnon, there are n second order denvatwes 1 e

: af . @ . Lt
= ax;' ax:) ———fx, (l I..ny=1. n)

dxjoxi

So, total n? elements are there, Therefore n*n matrix of second order partlal dcnvatlve is the

Hessian matrix which is symmetnc and all fI 1-—f22— e (CIalrant theoram)

),‘ #

; 1
I

Fii 2o pin
1f21: f22. f2n.
fal’ fn2.. . fan

Example:

Ifthe two demand functions for the two commOditicé are given by

q p2
y...—-—_

x:-
P q

then the marginal demand functions are

ox_-gq dy 2p
dp p2 dp gq
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lgher Order Differentiation and Its Applications

x_ 1 dy -p2 \
9 P  9q q2
Sincc 2"‘-. >0 and g{ >0 "

aq ap = therefore, two commodities are competitive \

Example;
If the demand functions for two related commodities arc given by |
x=ae™ and y=hera wWherea>0 § >0 '
Solution: Since two demand functions are given as
x=ae™
y=beP

their marginal demand functions can be calculated as: .

dx a
— “Pq b P-q !

-age — ‘ JNR
ap q ap be L T Ry :

dx a ' - . i
= pq 9Y_ i LR TY 7 EREN R ‘
—=-ape?? —=_peP? - A .
aq "aPeTt S=-bet i Gl i
B o & oyrmalnl s R oy I R
ecause 77 = and ap >0, therefore the given commodities are neither competitive nor

wl

complementary.

Example :

Consider two products, A and B.‘,,th‘e- dém‘and;-fo'ri good A and B, & described by following two

equations

_ 200
Ya papb/2

1000

Qv = VT find dq/ dq given the result explain A and Bare complementary or substitutes.
a 3

Solution
2 o9
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and Its Applications

Higher Order Differentiation

200 200 pb=1/7
- pa

q' . r{”w’F

Qi - <112
297 2000 (=2 py™"?) /pa)
aphk 2
ph=2/?

pa

=.100

=100 pa™! pb *?

1000
an = paiPpp
r"cb_ d = 1000 )
dpa B dph pal’pp
1000 , @ <12
— =Ips**)
npb “épp
ﬁq,n, N 1000 )
dpa dpa (pu”3 b )

_ 1000 (=2
pp 3 e

-1!3-1)

==1000 _4n .l ,
T3 Pa Py . 1
i P v'.
ative therefore:

f |
We know that p, and P are positive because prices can never be neg

|

dqa 100 +
app () =(—) <0
apb paph3i/2 ++
o 00 +
Zab_ 10 =- () <0
pa dpa4/3 pb + +

Because both cross elasticities are — ye

ment goods,
log U = B, log (q; = y,) + Ba( Q2 = v,), where u'is

L0<fi<1, 1>0,qi- 1 >0and = 1,2,
th respect to 91 and determine its sign.

Example: Two goods are comple
The Stone-Geary Utility function is written as y=
the utility index, qiis the quantity of commaodity

a. Find the marginal utility of thjs function wi

&0
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Higher Order Differentiation and Its Applications

b. What is the significance of a positive marginal utility?
c. Find the second derivative of this function with respect to q;. Does the utility function

exhibit diminishing marginal utility?
Solution: Utility function is: u=log U = By log (q; = v1) + P2l a2 = 12)

a.  Marginal utility is given by :f’% o ﬂ‘y X which is greater than zero; because both the
1 1= 7

numerator and the denominator arc positive,
b. Since marginal utility is positive; this implies that as utility increases monotonically with

increase in qy.

dzu . . . " » - . .
S G A sSE £1_+ which is less than zero. Since the sccond derivative is negative, the
1 1—)’1)

utility function exhibits diminishing marginal utility.

Example: Given the production function: -
P(LK)=SL"? K" +L.
Find out the partial elasticity with respect to labor at (L,K)= (1024,27).

Solution: P(L,K)=5L"? K"? +L ¥ e

' L (i "¢
E[_=P L(L’K)'LP(L,K)‘ () ’J y '

gy IS 1e13 L
=(L K "f'l)s,‘:l/skus.,.h

LY/5K13 41
T ————
5L1/5KY/3 4L
‘ 0241/5271 341024 _ 259
Therefore, at (L,K)=(1024,27) we have €L a7 iatiozs  2n

= incre ith 1
This explains that if capital remains constant at K=27 and at L=24 labour increases W
peng 259
percent, then output will increase by v percent.

Example: Utility function is given:

13 |
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ti
Higher Order Differen

W g0 8

U=U=X""Y"".
ween X, Y.

itution bet
Calculate the marginal rate of substitutic

o0&y ,08
Function is U= X"y"*,
. . X 1o gCl MU,‘-
First, take the partial derivative of U with respect o

au -OASY-O.S.

MU,.22= 0.5X

Next, take the partial derivative with respect to Y to get MU,
MU=ZL = 0 5x05y-05
P a,:
Dividing MU, by MU, we get | | T N

MU - 0.5x=0.5y0.5
- %
RS MUy 0.5x0sp-os _ Y/X

Example: Given an isoquant |
Q=K“6L"2 . ! AL
Find out slope of isoquant, | % i g T
| T S 5

7 =k 4
Solution; Slope of‘Isoquant—dL ; B

e

dk_ aQ 80
aL aL oK

50‘1 1/6 =172 4 ]

aL 2K L {

30_1.,.56, 112 |
aK 6K L '

k X s £ ¢
dﬂf _GKJ/GL Y (;:K 5/6L1/2)
_-:_;_5 KH6 KSIGL.jQL_IQ

=-3(K/L)
Therefore, the slope of isoquant js 3(K,L),

Example: Giyep demand function Q- 90+ 2P=0; and average cost functiop
AC= Qz- 39.5Q+ 120+ 125/Q
Scanned with CamScanner



Higher Order Differentiation and Its Applications

Calculate the level of output where:
(a) total revenue is maximum,

(b) marginal cost is minimum,

(c) profits is maximum.

Solution: (a) The demand function is Q- 90+ 2P=0.
2P=90 - Q

P=45-0.5Q
TR=PQ= (45 - 0.5Q)Q
=45Q-0.5Q?

Written as

For maximizing TR, first-order condition is:
dTR _ =
@ ~P -0

Q=45

.. . dTR
and second-order condition is, PTIR -1<0.

Therefore, at Q=45, TR is maximized.
(b) AC= Q% 39.5Q+ 120+ 125/Q

aQ
NPT dM d*Mc
MC is minimum when, — > =0 and e

dME e -
o =6Q-79=0

Q=13.167

d*MC
— =60,
And, TE

Hence, at Q= 13.167, MC is minimum.

Profit (n) = TR-TC

TC= AC.Q= (Q% 39.5Q+ 120+ 125/Q)Q
= Q’- 39.5Q*+ 120Q+ 125

- MC=ZE = 3Q% -79Q+ 120

(c)
=450 - 0.5 Q*— (Q*- 39.5Q*+ 120Q+ 125)

=-Q*+139 Q- 75Q- 125

For maximization of profit, first order condition

dn _ _3Q* + 78Q- 75=0
dQ
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X ) \l -
' l ' - ¥ ' I I| \ ‘q

Hlgher Ordel
(=1 QAN 0

ga AKX
O andd Q

{ der condition,
or second order ¢ | |
and f ' 00 1 78
e
When Q = 1 then, |
41 7250,
Ca!

When Q=25 then, “
A2 e 720,

oy

Q

Therefore, profit is maximum when Q=25
Maximum 1= -(25)% 39 (25)-75(25) ~125= 6750,

Example: Two different demand functions are given:

Q=21 -o0.1P, and Qy = 50 = 0.4 Py
TC=2000+10 Q where Q= Qrt Qz, what price will the firm clungu (@) with di:sc
(b) without discrimination between markel§? '
Solution: since demand function in fj rst mmkcl 18, Q
Therefore, P;=210- 10 Q ‘,‘ |
And, TR,=P,Q, = (ZIO-IOQ;)QI s 210Q;—- 10 Q,

MRy= 7% =210.20Q,

muinntion and

1921 = 0.1,
f

{
!

Profit is max:mum whcn MR-— MC

MC= Z%=10

MR,=MC Ry
210- 20Q,=10 ; fh
Q=10 | G
When Q;= 10, P, = 2. 10(10)= 110

demand function in second market is, Qr= 50 ~ 0.4,
hence, P)=125_7 5 Q

TRy=(125-25Q)Q = 125Q-2.5Q,?
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Higher Order Differentiation and Its Applications

MR;= T ol =125-5Q,

When MR,=MC
125- 5Q,=10
2= 23

When Q,= 23, then P2=125-2.5(23)=67.5
¢s a lower price in the second market where the demand is

The discriminating monopoly charg
first market where the demand is relatively less

relatively more elastic, and a lngher price in the
elastic.

Example: A producer is a prlce taker on both the market for mput factors labor and capital, and

the market for end products Thc cost of one unit of labor equals w = 2, the cost of one unit of

32¢, whlle the selling price of the end products equals p =32. 'I'he proc’tucnon

capital equals r=
Kmi. Determine the maximum proﬁt.

function of this producer is given by Y(L, K) ='T}3

Solution: :
The revenue function is R(L, K) = p. Y(L K) =32. L” 75 Ay

Cost function
C(L,K) =wL + 1K= 2L+32K and
Hence, profit function becomes
II(L,K)=32LY8K"™2 _o1._ 32K
Partial derivative of n(L, K) 18 glven by
mp=4L-""K'"?-2 and "5 G
mi=16 L'’ K12 .32 |
the stationary pomts of prof it functlon are solutlons of the followmg system
41782 2 = i T ol s T I
16 L"*K 2 -32=0 . Ry

Hence, K"2=1/2L"® and

therefore, K = Y L4

Consequently, L"3(1/4 L%

which gives L=1 and therefore, K=1/4
Hence, (LK) = (1,1/4) is the only stationary point. By the use of the criterion function we

-1/2____ I

investigate whether or not this point is a maximum location

TT;"L= _3.1/2L-IS/8K112;
s
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jat
'fferentla
. order DI
ngher

. ' by
/! / . H S -|Ivcn
le=-8L"*K*? and jetion 15 &

erion fur
, " at the criteriol
)= 2L K12, which implies that
t n. 2
OLK) =iy mi - (i) o
- (1ALKIYSLIK )
=28 L.'.’GK-' .y 4[‘-144'3}('1
=24 L"K">0
"
Hence, as C(1,1/4) >0 and ),
at (L,K)= (1,1/4), with valuem=6.

7/9K-|/2)2

r a i ' i ht
.l O”O\VS (h t
(|’1/4) <0 1

4. Quadratic Forms
A quadratic form of two variables is
fix,y) = ax?® + 2bxy +cy’;
a,b,and ¢ are constants. Now, using matrix notati:on:

fx.y) = (x,y) (Z g) (;)

fi1=2a, fi,= f31=2b and fa2=2c are the second order partial de.rivflt].VCS‘Of the ﬁ'mg@n f_(x,y)
Therefore, the Hessian of fis giveﬁ by~ iy . oy |
a b '
2(IJ c) ’ g v
The given quadratic form is said to positive definite if f(x

,Y) >Q;"for all valﬁes of x and y i.e,
(%) # (0,0), and positive sémideﬁnitfz if f(x

,¥)2 0 for all values of (x,y). The given function is
negative definite if f(x

,¥)<0; for all values of x and y, and |t is negative semidefinite if f(x,y)<0.
And it is indefinite we have two different pairs of x and y; (X',y')'and x"yM; and also f(x*,y"
>0, 7 W, ' g '

Example: Express the quadratic fdrm below és
equations:

a matrix form, Determine the definiteness of the

a) f(x1,x;) = 4x* +8xy +5f
b) flx1,x;) = -x* +xy - 3y

Solution: a) fx,y) = (x,y) (Z g) (;)

Therefore, Symmetric matrix jg (Z

4 e
5), whose determinant IS positive, Hence,f(x,y) >0 for all
values of x and y, Therefore, the q

uadratic form jg positive definjte.
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=1 1/'.!) v

=0 (1 VG
[ e P\ -\'

1 172
/. ). whose determinant is negative, Henee,f(x,y)<

Therefore, symmetrice matrix ig (—_
1/2 =3

0 for all values of
es o' x and v. Theref: b A i .
Y. Therefore, the quadratic form is negative definite.

5. Exercise:
1. Find the sec
SCCo .- e 3 . ¥ - .
ond = order partial derivatives fxx, fyy and fxy for cach of the following

functions:

2x+5y

() Z = (7x +3y)*

(©) Z= (x*+ 5y)°

(d) Z = (2x+5y)c”

(e) Z=log (1+x7%) +y*

() Z=3x%Y '

Consider the function: f(x,,x,)= (3x7 + 5x, + 1) (x, + 4). |

2.

a. Findf; and f>.

b. Findfi, fon fizand for .0 ».

3. Assume the demand for sugar 1sa function of incoxﬁe(‘{), the price of sugar (Ps) and the

price of saccharine (P¢), a sugar Stlb:s;titllte;-a's‘ follows:

0, = f(¥,P,P)=005Y+10P,-SP*, |

a. Find the partial'dcrivatives of this demand fiumtion. ;

b e 50 45
b. Find the elasticity of demand with respect to income (% ' 5—} when Y = 10,000, Ps=
f X | Y g d

£

Sand P.=17.
é P
—QL- —'—] when Y = 10,000, Ps=5 and P =7.

¢. Find the own-price elasticity of demand ( )
. . " (7Qd PL — dP =17
d. Find the cross-price elasticity of demand P -é— when Y = 10,000, Py=35and P = /.
¢ d

4. Show that fxz = fzx and fxzz = fzxz = fzzx from the following function:

'y

I+
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o and s Application
"-.\‘ A W v

. MITOMY
A \l\“..I ‘ )
Higher L

\ S chawn > \ \ 3 ‘ y
N \ ‘ AN (M W s l a\ \\ “ \‘ ‘ \\ \ \“ 3\ ‘
WA \ A ' \ \
1 Bancisew \il\\ W h‘\ A1) ‘ " N n\ A\ \“‘ \\
l‘; OO man i \

DY

P AR

- bl
N ™y [

\ A
Qe

Qs \
SN fal elastie
- nd s Stetiey
- o and also nd all partial el .
hout the two commeditios Ny and Xj and alsy
What can vou sav ahout the \

v Vand commadity Y. the demay
e twe - commadition: commodity ' an
& A fim PAOMIoes two '

functions are:

Pr=1d44°

. \ i given by € = 1014519y, What will be
The combingg cost of production of these wnit W aiven by = 1014y =)

the prices OF'tWa products so that jotnt profit will be the maximumy,

L | d
Consider 3 Production function that takes the torm P04 KR and ASShmae thay capital

-~

(X) is constant at Ko = 64,

: . X )
2. Find the marginal product of labor, R
1 €L

b. Ifthe labor Vere paid real wage equivalent to the marginal produet of labor, how many

labors woulq be employed when the going WARE rate s 1)

€. What happens 1o the number of labor demanded whey the wage declines to 89

d. How many labor would pe demandeg i wage remaing S, but the capital iy inerensed 1o

100? "
My
€. Find the cros partial derivative, '—AT
CNed,

8. Example; Two different demang functiong gre Qiven;

Q=11- 2p|-2p2 and Q=16 Py Ip,
TC=9 +ax+2y Determine the

quantities thyy MaXimize (he
maximum profit,

profit O monopolisg nd also fing

9. Two differen demang functiong ol‘discrimilmling Mong

Poly are Riven:
Pi= 140 - 791 and P2=90-04 /2
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Higher
Order Differentiation and Its Applications

TC =20+ 2q + 3q* where g= 3
= i+ qa, what price will the firm charge in two markets to maximize

profit?
Solution:
1, a, fxx=—20y-8) f =50(x+4)
(2x+5yy3° LYY = —==1) and fxy = g a0 X =25y +680
(2x4+5y)? y = fyx (2x¥5y)?

b.fxx =29
4(7x + 3y); fyy 54(7x +3y) and fxy=fyx= 126 (7x +3y)
fixx= 4
c. fxx=30x((x* +5y) +6x (‘c +5y) )ifyy=50(x> +5y)’ and fxy= 300 (x> +5y)’x®
d. fxy=2e" fxx=0.

2-2x2 1+2x

€. fxx=-(—1—+xT)2-,fyy—2andfxy—

ffxx—6xe2y fyy=4x* 2’andfxy—6223’ 30 g . Vo :
2. Derivatives < ; | ; g =
a. f1= 6x;x;+24x;+5x2+20ﬁ—3x, +5x;+] ,
b. fi1=6x; + 24; 3 J22=0; f12= 6x;+ 5; and f21 = 6x; + 5. Note both Cross pamal derwatwes

are equal, as they should be, accordmg to the Young § Theorem |

3. Answers: ‘ . 5 S e :
= 005, > =10; P -}fﬂ;_g e e MR
b, 1.12 VAL, | |
c. -0.56 g e,
d. 0.16 e P g i P

4. Apply Young's theorm ' Y }

ox1 d —_— are both greater than zero. Hence the' commodities X and X are

nce — an
5. Si ccapz

competitive.
6. pi=3.2 and p;=3.9; e;;=-1.7; €2=0.8; exx=-2 and ez = 0.5.

7. Answers:

\ﬁ’7
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~ p‘)”cf-

3 K): 40
{ -,‘ i . -

. .-‘I'A_ \ , ! 2

b. L= 16 . ' wape (]CLIII\L
L = 25; labor demand increases with wag

s, & ak <0 _ .
d Ll:i(i)-=.—(r'$;l.c..h 39,
(" . L -
L
¢ 25L:K?

8. x=I and y=2:n=§

9. pr=110.52and p. = §5.5 52and q=13.17

6.References:
I. K. Sydaster and P. Hammond, M

Asia, Delhi, 2002,
2. M. Hoy et.al, Mathematics for Economxcs

Edition, 200] . . 'ﬁ i
| hematlcal Analysis Bussiness and Economic

athematics for Economic Analysis, Person Educational

PHI Learning Private Limited, Delhi, Second

Applications, Harper & Row Pubhshers New York, 1967,
4. Rosser, Mxke Basrc Mathcmat:cs for Econonusts Sccond Edition, London 2003,
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= _ﬂ‘“”f’ 2 = Section 4 The Second Derivative

ay be thought of as the second

the Position function 5(1). Thus, the acceleration m

derivative of Position; 1hay is,
® d’s
all) = —
dr?

This notation is used i the following example,

HGEOARY

Ilehe Position of ap object movin
37 + 4t ¢ time ¢, find jrg velocity

Gmnscrtoxin.rr,r , i ine is gi =t -
a(l) in Example (GJS' (gs:n: Engl?:clzc;elﬂc:::iffl“ e is given s
eraphing utility to graph v(x) ‘ .
and a(x) on the same coordinate  Solution
axes using a viewing rectangle  The velocity of the object is
of [0, 2].1 by [-5, 5].5. Explain
what is happening [0 v(x) when
a(x) is zero. Then use your cal-

and its acceleration js

ds
() =— =32~ 6t +
v(r) o 3 6r+ 4

culator 1o gsee what effect
changing s(1) to 5,(r) = 27 - 0
3r2+4:hasonr(r)anda(0. alt =—d—v=i£=6r—6
@ dt  dP |
on f{x) one more time, you

If you differentiate the second derivative f"(x) of a functi
get the third derivative F"(x). Differentiate again and you get the fourth derivative,
ation f""(x) begins to get cumbersome.

which is denoted by f“)(x) since the prime not
In general, the derivative obtained from f{x) after n successive differentiations is called
vative of order » and is denoted by f""(x).

the nth derivative or deri

HiGHER-ORDER DerivATIVES

/' The nth Derivative n any positive integer , the ath derivative of
a function is obtained from the function by differentiating successively n times,
If the original function is Y = f{x), the nth derivative is denoted by

4y or - fy)

For

f

Find the fifth derivative of each of the following functions:

(@) fix) = 42 + 542 + 6x — 1

21
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ifterenfiation: Basic (,
Diff " 85t (o

166 (Imptcr 27

1
(h)y = ;

Solution e
() () = 124"+ 10v + 6

() = 24x + 10

S"(x) =24

fM)(.\') =0

f{ﬁ){",) - O ]

dy d, L1 g Lok

— = —(y ) " \ .

(b) dv dl'( ,;

(iz: o i(_l-l) e 21 -3 bl f}_

dv: dx g :
3, x AT

B Loy - g 5

(i_ |

d%y 4 s L5 o4
ot (=0T =104y -
d1'4 dx( .
dsy

' 120
= Y ) = _1201.' Loy
v dr (24x7°) = .‘ l_xﬁ

case, use the appropriate notatip), for the second derivative and simplify your
answer, (Dop’y Jorget 1o Simplify the Jirst deri vative as mych as possible before
conmputing the second derivatiye. )

: 2
LAx) =500 _ g5 27x + 4 2. flx) = -5':.15 ~ 4y 492 6x — 2
3.y=5\/,¥+—_35-f-—\i/_-+-1- 4_y=—-2—-.'\/_2}+-\/§t__ L
A 3Vx 9 3y " 6Vy
S = 3y 4 1) 6.f() = 2
. . \ ' St + 1
= (15 4 gy .
(" +5) 8.y=( - 2,3y
9.9 = v/ + x2 1
10. fluy <
(Bu? ~7y2
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Chapter 2 w Saction 4 The Second Derivative 167

Mope 2 4
| s 12,y ;‘?T—I;T
3. e o

AN = v 4 gy (Use the product rule.)
14.A0) = 2y 4 N’ (Use the product rule.)

A L)

R (x — 2)

) (’ + ]) 16, h = (z

s PN » . bos 4 ¢ .
In Problems 17 through 20, the position s(t) of an object moving along a straight

line is given. In each case,
(a) f: {ml the object's velocity v(1) and acceleration a(t),
(b) Find all times 1 where the acceleration is 0,

17.5(0) = 3 — 50 — 4 18. s(1)
9.5 = (1 = 0" + 21 + 1)? 20. 5(r) =

WORKER EFFICIENCY  21. An efficiency study of the morning shift at a certain factory indicates that an
average worker arriving on the job at 8:00 A.Mm. will have produced Q(f) =
—r + 8 + 15¢ units ¢ hours later.

(a) Compute the worker’s rate of production at 9:00 A.Mm.
(b) At what rate is the worker’s rate of production changing with respect to time

at 9:00 a.m.?
(c) Use calculus to estimate the chan

9:00 and 9:15 A.m.
(d) Compute the actual change in the worker’s rate of production between 9:00

and 9:15 A.M.

2 -5 +1-13
4% — 152 + 1 — 3

Ii

ge in the worker’s rate of production between

INFLATION  22. 1t is projected that t months from now, the average price per unit for goods in a
certain sector of the economy will be P(1) = —F + 7 + 200t + 300 dollars.
(a) At what rate will the price per unit be increasing with respect to time S months

from now?
(b) At what rate will the rate of price increase be changing with respect to time

5 months from now?
(¢) Use calculus to estimate the change in the rate of price increase during the

first half of the sixth month,
(d) Compute the actual change in the rate of price increase during the first half of

the sixth month,

POPULATION GROWTH 23, Suppose that a S-year projection of population trends suggests that ¢ years from
now, the population of a certain community will be P(t) = = + 9 + 48t +

200 thousand.
(a) At what rate will the population be growing 3 years from now?
(b) At what rate will the rate of population growth be changing with respect to

time 3 years from now?

23
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Differenﬁurion:“ _l.‘aqu»i_c (°"f9ms

—
I

168 | Chapter 2

ation growth dyy
in the rate of popula fing
Jiangc
e the chang .
. (o estimale . _ rowth during the fin
.:}l(_‘"l"& o . Y “|h y(,.lr. ul“tlon & & ‘-l
(c) ll.\(}f‘d month ol !lmlrﬂl e in the rate of pop
the fir: qual chang
. te the ac
(el) Compu

[ ear.
month of the fourth y

seconds, its distance frop, its
ine so that after £ second fistan :
long a straight line .snollh:‘ 12 meters. Find the acceleration of
jcc es alc as 2 1 100t +
hject moves e 1A 4
ACCELERATION 24, An object | e}
starting point 18 £ 2
the object after 3 seconds.

2
o f . kilomcmm‘
! trip, a car has gone D(n = 64t + 3 t 0
s of an 8-hour , A Ci
ACCELERATION 25, After t hours o

i Of timc
i car as a function _
: ila expressing the acceleration of th‘tl:] r;qpect st

b) b whit fom'“ﬂ‘ 'w.,locity of the car changing wi }hiq i

' ' : ‘c s - . H y rlt <
h) At what rate is i s it .
( of 6 hours? Is the velocity m.crc.lsmg‘ il shefigo Vuring: the ssvagih
(¢) By how much does the velocity of the car ¢
hour?

’s reacti a dose of me
MEDICINE  26. One biological model* suggests that the human body’s reaction to a d

d-
icine can be modeled by a function of the form

F= %(mr2 - M%)

where X is a positive constant and M is the amount of medicine absorbed in the

blood. The derivative § = :—5 can be thought of as a measure of the sensitivity
of the body to the medicine.
(a) Find the sensitivity §.

d R
2 S _d

N e—

and give an inter retation of the second derivative,
M~ a4 8 P ‘

BLOOD PRODUCTION 27. A model' for the production of

a type of white blood cells (granulocytes) uses a
function of the form

where A and B are
number of cells pres
(a) Find the rafe of productjon P'(x),

(b) find P"(x) and determine gy values of y for whic
Involve m),

Positive constants, (e eXponent m g Positive, and y s the
ent,

ey .
hp"(x) = 0 (your answer will
* Thral] ey 4, Some Mathemay,,

M. C Mickey ang | il “cgl /f/la({cl,y in Biology, US. Dept, of Commerce,
97, pages 287289, cillationg yyg Chao

S in Pllysmlngicul Control 3}'ste11\s." Scilence. Vol.

Al

Scanned with CamScanner



—— Cbﬂmm ?

Sees: —_
® dection § Tha Second Derivativa

1G9
‘ffw

(t) Re i
.'ul. an article on blaod cell production aned write
Cmatica) methods can be
ACCHERATION

used to model suely |
28, 1f b
H(;‘)n object 1S dropped or thrown ve
' o . B Hlﬁ’L ¥ Snl f ]In‘ \\-‘he[(‘.‘
mMitia] height.
fﬂl l)(‘ri\'c an c_‘p

() How doe
(c) W

n paragraph on how mntly.
woduction, !

rtically, its height (in feet) after r seconds jy

So 19 the initial apecd of the ohject and iy
ression for the aceeleration o

§ the acceleration vary with time?

f the object,
1S he significance of (he

fact that the answer 1o part (a) is negutive?
29. Find J

() if fiyy = X - p LR M. I+ 5y - 0.
3 v
30. Fing 42

o ify=viel, .

2v V2
31. Find fm(_\') ifﬂ.l) = —\/l-=‘ - % + \/5

. " 4
_ S2.Find ¥"(x) - 2(y) — 2 o) =% — x4+ <
& 33. An object moves along a straight line with velocity v(r) = (71 — 5)%4 — 1)’ for
0=r S. 5. Use your graphing utility to draw the graphs of the velocity and the
acceleration a(t) on the same axes and then answer these questions.
(a) When is the object acce

lerating and when is it decelerating for 0 < ¢ = 57
(b) When is the velocity the largest for 0 < ¢ < 5?
(¢) When is the accelerati

on the largest for 0 < ¢ < 59 What is the velocity at
this time?
(d) What is the difference between the |
=157

argest and smallest acceleration for 0 <
V> 34, An object moves along a straight line in such a w

given by s(t) = (2 + r = 2 Use graphing utility to sketch the graph of s(r),

the velocity v(f), and the acceleration a(r) on the same axes for 0 =t < 2. Then

use your calculator to answer the following questions.

(a) When is the velocity 0 for 0 = ¢ < 2? Where is the object and what is its
acceleration at this time?

ay that its position at time ¢ is

(h) When is the acceleration 0 for 0 < ( < 27 Where is the object and what is its
velocity at this time?

(¢) Does the acceleration have a maximum value for 0 = ¢ < 2? If so, what is
the maximum acceleration?

#You may wish to begin your investigation with the article by William B. Gearhart and Mario Martelli,

“Blood Cell Population Model, Dynamical Diseases, and Chaos," UMAP Moadule 1990, Arlington, MA
Consortium for Mathematics and Its Applications, Inc,, 1991,
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Mathemah’cs for Economi
cs
Anthony Tay

particular.,

We can
alSO com ute ‘th; y
Pute ‘third-order derivatives’, ‘fourth-order derivatives’, cte, These are

useful, i i
although we will be using them legg I‘rcqucnlly.

Examp] 10.1 -
—e Ol If /()= then S®)=3x*, r"(x)=6x, S"(x)=6.

Notation If y=/(x), then

Second Derivatiye 1N | 2)(4 L& d’y
S"(x), . f"({), y ,—*—[zf(x), )
n-th ordered derivative SO, oy 4 2y
‘(‘),‘ Y, S5 @), -

If y is a function of time, then the second derivative is often written j, following the convention that

the first-derivative in such applications is written j .

The most straightforward interpretation of the second-derivative is that it is the rate of change

of the rate of change of S(x) as x increases.
Geometrically, the second derivative can also help to describe the shape of a function. When

used in specific disciplines, the first and second derivations can often be given an interpretation

appropriate to the context of that discipline. You are probably familiar with the concepts of velocity and

acceleration in physics.

Example 10.2 If x(¢) gives you the position of an object relative to some reference point x(0)

|
and ¢ is time, then ¥ is the velocity of the object, and ¥ is its acceleration,
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Wo o

I, My

AN e the Nm\q\ml,m,”\,

Mive g4 q
curvature, \vo

.|,,,,....|...|;‘|~ (he wlinpe of o funetion, particularly regarding its
honin With y HOOm e
e detingio, OEthe concept of convexity and coneavity,

A tnetion iy S 1o 1y

Mrielly YOy oy iy I(v,) 1
A ) \!mnl_lninlnn tho DOy (AWARY )) "//?' \
‘ ’ ' il | "' ’ i l
and Y\, ; \ | |
(N3 /() leg Strietly bolow (1 hmotion \
tor all valye

Sof y Strietly betwoer, Ny,
0 L}

One way to express this mmhcnmticully i given in next definition,

Definition A function |

8strictly concave over ity domain if for

any two values of x, say X,
and x, with N <Xy, and for ol 0<0<«l,

L) +(1=0)/(x) < f(0x, +(1-0)x,)

¢ ("2) /f(t)x1 +(1-0)x2)
|
I

A

fx,)| \

6f(x1)+(1 ,f(xz)

0x,+(1-0)x,
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If we allow th
€ chord t .
0 lie g
N the function at some points, then the function is s2id 0 be wezkly

concave, or Simply ‘conca
ve'
ith

AR : - h
Unction js concave if for any two values of x, szy x, 2nd x, w

% <X, and for g ¢
SO<],w,
» We haye

0r(x)+0-0)r(x,)< < f(Ox, +(1-O)x,).

A function j
S stl"-'lctl
Y convex if for any two values of x, say x, and x, with x, < x,, 2nd for 21]

0<8<1, we have

07 (x)+(1~ ~0)f(x,)> f(Ox, = (1-6)x,).
rall 0<f<1,we

01 (%) +U-6)f(x,)> f(Ox, +(1-6)x), 0<o<1.
J - &
Note that strictly concave functions are concave: the set of strictly concave functions are 2 subset of the

set of concave functions. Likewise, strictly convex functions are convex. Note zlso that strictly concave

functions can be strictly increasing or strictly decreasing.

Example 103 f(x)=x"? is strictly concave, and strictly increasing.

The definitions of concavity given above are very general, and can apply to functions that
may be non-differentiable at certain points. For differentiable functions, however, it is often easier to

make use of the second derivations to show concavity/convexity. From these definitions given earlier

it is possible to show that

&  f"(x)20 forall x in I

(1) J 1s convex on an interval [

(2) f is concave on an interval / <  f"(x)<0 forall xin I

3) f"(x)>0 forall xin /] = f isstrictly convex on an interval I
4) S"(x)<0 forall xin I => f is strictly concave on an interval |

We omit proofs. The results are sufficiently intuitive for our purpose. For a function to be concave, it is

apparent that the slope must never increase as x increases. It is also apparent that if the slope of the

10-3

Mathematics for Ecanomics
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The point where a function switel,

inflection Point. The plot below

and its second derivative is f"

function always dech:asgs

as w iucvcnscs‘ RO A0 £ <0, then e fnetion will have o ey
concave shape,

aspect of
function to be Strictly

Example 10.4

In particular, I

(1) that may not Be abivions 1 tat it i posibile g g
coneave over eval 2 withowt £(v) <0 Gorall v i
The function J)

==X s strietly coneave, but it is not e that PR 0 Tl v
(X) =<2 =0at y =g,

Con\'cxity and concavity

‘ . or intanee, 1
will play an portant role in finetion optimization. For indanee,
a strictly concave function J() ha

SApoint 1" atwhich £(x*) =0 then +* tmust be an optimal potnt,
A function may be cone

N \ AN WAl Kl \\“ “\
Ve in some pottions of its domain, and convex in other part
, 0
s fhom concavity to convexity, or the other way around, s callod o
1
Y Y I T s o — ‘ ' ‘u
s ofa function £/(x) = x* + 10y, its first derivative is J8) =

(¥) =6x. It is concave when x <0 and convex when xs= 0,

[T | " T 1/
[ | /|
H0 : ‘ ‘u(x)\o 4 '|
! ' * ‘_/'—';f’
® | |
t‘ e ._.!L | I; "
' |
| | |
t ‘ \
| |
- 00, - “l |
i | i |
’ | i . 1
| | | IR M A
l \
T 1 = “l \
5.0 2.5 0.0 25 B

l‘l“\'nl‘(.\)i \‘\‘
iti i i H ”Cd an in le

(a,b) containing x,, we have

S"(x) S x over (a,x,) and /"(x)20 over (x;,0)

. N\ @ o \ J
S"(x)2 x over (a,x,) and f"(x) <0 over (§,H)
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Chon pojy, Note

N AN \ \
\-‘\.

Vs Oy s g mie
Al b
hat ) need not bo zero for fo 10 be an inflection

\ et ‘_\\\'.-(‘ -'ll -‘;l lﬂ\,“ 1) i "’r n h“l
| N
]hk A b
B \ “\‘ d\"\
{ \\ N

also because it o
SUST A can ofte :
Voften b =iven economie interpretations

Example 0.8 Diminions .

e pmduﬂi“:n:\hm,;.\mmmnl I‘rwnhu'ﬂvit_v Ao (irm Inerenses labor input starting from low

| | sapacity generally increnses, Mowever, the incrense in productive capacity, as
| .

nore labor is added, tends 1o get smaller; inerensing labor from 100 1o 101 might increase productive

Capacity by 10 unity; increasing labor from 101 to 102 might incrense productive capacity by 7 units,

s:‘\'- Th:“ ‘_ o i TN ] 0
\ 18, the rate of incrense iy productive capacity falls as more labor i added. Suppose we

m mcnt 1 * Sy N } ] . . - -
P the firm’s production function by J(L) where L is lubor input, We can impose increasing

productivity be requiring the condition J'(L)>0, Wecan impose “diminishing marginal productivity”

by requiring /"(x)<0.

Example 10.6 Diminishing Marginal Utility  Suppose u(x) represents the utility that a person gets

from consuming x amount of a 2ood. If 1'(x)> 0 then more of the good is preferred to less of it. If

u"(x) <0, then every additional unit of the good generates less additional utility for the consumer than

the previous additional unit,

Example 10.7 Risk aversion

shape like in the figure below.

Suppose again that #'(x)>0 and 4"(x)<0. Such a function has a

u(x,)

u(px + (1

pu(x,)
(1-p)u(

u[x,)

xi px{’"'ﬂ)x;

Mathematics for Ccanomles !
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Fithey have fhya CERRIN e, $e o

Wrotild woid the lestery it giver 4 choice. He is
Nslc-nvepsg? wila wvoid the lostery it given a cho
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ilg Mevwr foyg bty

Plle s (] .. Pz, - i pr, + (0 pyr,y.

he person prefers the lottery, f1g s "iskae

V’Ji”g’/

Fxercise

. Show that the function /()=

~ % i strictly convex,
2,

Find the regions of 4 fur which f(x)y= = =Wx=2)x+3) is (i) strictly convex, (i) strctly
concave,

3. Find the first and second derivatives of each of the following functions.

@ S = X 0=y wihere 3, i=1,2,..,n is 2 set of mumbers, Find the intervals over
which the function is (strictly) increasing, decreasing, concave, or convex.
(b) y=f(x)= log,e. What is the largest possible domain of this function? Find the

intervals over which the functions are (strictly) increasing, decreasing, concave, or convex.

Sketch the graph
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LOCAL EXTREMA AND POINTS O INELIC TWON
l“‘\

v Q w .
In lecture 9, we have scen a necessary condlition for loeal sty and Toeal mindi

In this lecture we will see somo sullicient conditions,

In the following results we assume f 1 (¢, ) = R and ¢ € (0 h)

1. SUFFICIENT CONDITIONS FOR A LOCAL 1NTIRIMUN
o alindlar

We will state results for local maximum, and vosulta for loeal minhni 1
[ s inereaxing o (0= 0

Theorem 1. Let f be continuous at ¢. If for some 0 =

and decreasing on (c,c -+ d), then [ has a local moximum at ¢

Proof. Choose  and y such that ¢ —d < a <y < o Then f(x) < f() The pontiunity
of f at ¢ implies that f(z) < limy-o- [(4) = < J(0), Stmllavly, 1o sy <ol g, thon
(-]

f(c). This proves tho rosult,

f(l') < limy e+ f(y) =
(IS

(1) (First Derivative Test for Loecal Mawimum) Let [ be

Corollary 2.
tinuous at ¢. If for some § >0

(z) >0V z € (c— 4, ¢) and ['(@) SOV c (¢y0) )

then f has a local mazimum al c.
ative Test for Local Maaimum) If [ 1o twice difforentiable

¢) =0 and [ "(e) < 0, then [ hoa a local matmwm al o

he Firat Derivative Teal (for local mindmum anid

(2) (Second Deriv
at ¢ and satisfies f'(

Remark 3. An easy way o remember |

local mazimum) is as follows:
f! changes from — to + at ¢ = [ has a local minimum il o

+to—ate=f hag o local mazimum al ¢
s We have ['(n) =

Now, conalder the following

f' changes from
(1) Let [ : R = R be defined ag f(z) =

Example 4.
0 when @ = =1,0,1,

D, s, /6) =
table,
iterval | (=00,~1) (=1,0) (0.1) (1,00)

+ - |

Sign of [’ ,
So, we conclude that [ has o local mindmum ab iz = O and a local wavima ol
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LOCAL BATREMA AND POIVTR OF TRELYEGTION
(7) Cannidey J o0 0,0) <o W defined by
a? A0 < x| <1,
-1, ifm =),
] acl i
We note the condittons of the firat derivative tesl 18 not salisfied. In facl, f is

Afferentiable on (=1,0) and (0,1) and [’ changes sign from — to + al z =0
but f tn ot continuous at @ - 0, Nevertheless, [(0) < f(z) for oll nonzero
2E(=1,1), and thus [ has a striet local minimum at z =0,

(DY LRy R s defined an J(z) = 2%, Then f(0) = 0 < f(z) Jor all nonzero
2 & R). Therefore, [ has a striet local minimum at 2 = 0. Note that f(0) =0,

noeE

but f7(0) s not ponitive,
2. CONVEX Sir8 AND CONVEX FUNCTIONS
Let Vo be a vector space over R,

Definition 5. A se1 ¢ C V is said to be conver if the line segment between any two
points in C lies in C, i.c,,

if for any z,y € C and any L € [0,1], we have tz + (1 — tyy €C.

Example 6. It is clear that the unit disc is convez in R2, However, the unit circle is not

conver. Any interval in R i3 a convez set,

Definition 7. Let C C V be a conver set, A function f: C — R is said to be convez if
Jorall z,y € C and for allt & [0,1], we have

Stz 4 (1= 1)y) S tf(z) + (1= t)f(y). (%)
If for t € (0,1), the above inequalily is strict, the f is said strictly convez.

We say that [ is concave if the reverse inequality in (*) holds.

Theorem 8 (Derivative Test for Convexity). Assume that S layb) s differentiable on
(a,b). If [ is increasing on (a, b), then [ is conver on a,0). In particular, if f

and non-negative on (a,b), then [ is conves,

exists

Example 9. Let [(z) = o* = 62® + 9z. We have f'(z) = 3w - 1)
6z —12. We sce that f(z) > 0 if 2 > 9 qnd /()

z > 2 and concave for z < 2,

T =3) and f'(z) =
<0ifz <9, Hence, f i conves for

Example 10 (Examples of convex functions), e g Strictly ¢
' ' onvex
o zlogz is alrictly convezs on ((), o), on R.

o f(z) =1 ig strictly conyey but [ 0)=0
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LOC \L ; T
l} | .\l"Ea\'l\ AND POINTS OF INFLECTION ;

phe following result is one of he |
A1CTe »
asons why convex functions are very useful in

(pplications especially in optimization prolye;
! IEN

rheorem 11, If f: (a, .
a b) = is conve and ¢ € (a,b) is a local minimum, then is c a

gmimum for f on (a, b | :
(a,b). That 15, local minima of convez functions are glabal minima.

3. POINTS OF INFLECTION

»finiti .

Definition 12. Let f: (a,b) = R be a function and c € (a,b). The point c is said to be

a point of inflection for f if there is § > 0 such that f is convez in (c =9, c), while f
s conves

, is concave in (c,c+ 8), or vice versa, that is, f is concave in (¢ = 4,c), while [i
4 in (¢, ¢+ 0).

Example 13. For the function f(z) =2° on R, 0 is a point of inflection.
| Theorem 14. Let f : (a,b) — R be a function and c € (a,b)-
ction] Let f be twice differentiable

(1) Necessary Condition for a Point of Infle

at c. If ¢ is a point of inflection for f, then f"(c) = 0.
Point of Inflection] Let f be thrice differen-

(2) [Sufficient Condition for a
tiable at c. If f"c) =0 and f"(c) =0, then c is a point of inflection for f.

Example 15. o For the function f(z) = *, 0 is not a point of inflection, though,
f(0) = 0.
o For the function f(z) = 2% 0 is a point of inflection, but f"(0) =0.
Problem 16. Sketch the graph of the function f(z) = % after finding the intervals of
ocal mazrima,

decrease/increase, intervals of concavity/convezity, points of local minima/!

points of inflection and asymptotes.

Solution. We note that
2z2(x? — 12) " 16z(z* + 12)

f(.Z') fre 2.’E+ x28f4a f,(i") - (2}2 _4)2

y = 2z are the asymptotes. Moreover, the function is

Verify that z = 2, z = —2 and
increasing on (—00, —2¢/3) and (2v/3,00). The function is decreasing on (—2v/3,-2)
(—2,0) and (2,00) and

(-2,2) and (2,2y/3). Furthermore, the function is convex on
concave on (—o0, —2) and (0,2). The point of inflection is 0. The sketch of the graph is

shown below.
’ Scanned with CamScanner
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. 102 | Chaprer 2

———

Differentiation: Basic Concapts

Solution

C l b

') = 200 gy - 1
net
") = 6042 - ¢

and i
and thep dlﬂ‘crcntinm again 1o

—

B X A M P UEN# 2R

Find the second derivative of the function y = (& + 1),

Solution
Compute the first derivative, using the general power rule, to get

[ )
% =50 + 1)%20) = 10x(:2 + 1)*

Then differentiate again, using the product rule, to get
2

2 = 10x402 + 120] + 1062 + 1y*

= 802 + 1)* + 10(* + 1)*
= 10x* + 1)’[8x* + (@ + 1))
= 10(:* + DP9 + 1)

Ix—2
Find the second derivative of the function f{x) = (_\:E—_l_)?"

Solution
By the quotient rule,
) — (A = D20 — D
Flx) = = 1D*3) ((3\_ n’i)n(\ (D)
(x = DB = 1) —203x = 2)]
B (x— D
3y —3—6x+4
R

1 — 3x

—— —

-
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I'he Second
’)C'-i"¢1 { i“(-

ATION OF THE
Derivarive

Chapter 2 m Section 6

The Sacond Derivalive
o e p 16y

of change of the rate of change of a quantity, Such
arise in a variety ol sin illn'plc. the “c?c'?m“(m of n car is the "-'\::\Q‘
;'Imm:c with rr:-'«‘.l“‘Cl to time nf_il'& \:chloul'l?’- w.|.”.Ch- -'T i::sﬁ::‘léi‘i N;lcl of ?h““g" Wit}
rc«pl-‘cl to time of its position. ‘! position 18 IITL.‘\S.".‘;'(-“ miles ; éin: Hme in hourg, lh‘
velocity (or rate of change ol distance) is measured i mAes Per 1oun, and the \
3 in miles per hour per hoyy "

cration (or rate of chang¢ of velocity) 1s measured
e of a rate of change are used freqy .
| c“l‘y in

times, for example, you may hear a government econom,
h the inflation rate is increasing, the rate at which i M
1§

prices are still going up but not as quickly ag yp,
' ¥

¢ rate

This section is about th : | i
iations. FFor ex

Statements about the rate of chang
economics. In inflationary

assure the nation that althoug
doing so is decreasing. That is.
were before.

{ the function f{x) with respect to x is the derivative F'), ang
f the function f'(x) with respect to x is irs deﬁ\f‘anv(
ard, so we write the derivative of the derivative off(e
as the second derivative of fix) (read f"(x) as “f do?

the second derivative of y with respect to x is Written

The rate of change 0
likewise, the rate of change 0
(f'(x))'. This notation is nwkw.
as (f()' =1 "(x) and refer to 1t
ble prime of .1""). If y = f{x), then

d-v J
as v" or as —5. Here is a summary of th
o dx”

e terminology and notation used for second

derivatives.

derivative f'(x) is sometimes called the first derivative 1o

The ordinary
derivative f"(x).

Y
\g distinguish it from the second

A/

The Second Derivative m The second derivative of a function is the I,
derivative of its derivative. If y = f{x), the second derivative is denoted by
d*y '
dé*

The second derivative gives the rate of change of the rate of change of the orig-

o f'

inal function.

Y, LB ~ ‘ . R ,‘
You don’t have to use any new rules to find the second derivative of a function. Jus

find the first derivative and then dilferentiate again,

™

Find the second derivative of the function fix) = 5x* — 3 =3 ¥ 7.
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F e %ﬂaﬂﬂ 2 w Section b

~—

S _T']?_Sp_gond Derbvativg

163
By the quotient rule agqj,
- 133
£ = L2 DY=3) = (1 = 33 - (1) ,
(x = 1)7 1t
=236 -l -1y 4+ - £3%) i
(,\' - l)(' It'i.
=232 ox '\
=" T G-y |
| }
A Worb of Apvict Before computin

g the second derivative of 2 function, always take the time to sim-
nvative as much as possible. The more complicated the form the first
¢ more tedious the computation of the second derivative will be.

plify the first de
derivative is, th

APPLICATIONS OF THE

The second derivative will be used in Chapter 3, Section 2, to obtain information
SECOND Derivamve about the shapes of graphs. In Sections 4 and 5 of that chapter, the second derivative
will appear again, this time in the solution of optimization problems. Here is a more

elementary application illustrating the interpretation of the second derivative as the
rate of change of a rate of change.

PR
PRt

An efficiency study of the morning shift at a certain factory indicates that an average
worker who arrives on the job at 8:00 A.M. will have produced

o = =7 + 67 + 24t
units ¢ hours later.

(a) Compute the worker’s rate of production at 11:00 A.M.
(b) At what rate is the worker’s rate of production changing with respect to time at
11:00 A.m.?

(c) Use calculus to estimate the change in the worker’s rate of production between
11:00 and 11:10 A.M.

~(d) Compute the actual change in the worker’s rate of production between 11:00 and
11:10 A.M.

Solution

(a) The worker’s rate of production is the first derivative
Q'(n = -3F+ 12t + 24
of the output function Q(#). At 11:00 AM., t = 3 and the rate of production is
0'(3) = —3(3)* + 12(3) + 24 = 33 units per hour
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Pl prnrtimtlnn. 3 -
(hantas 9 i 0N r (r‘_'rgfn.
164 | (hantsr |

1 f the rate of production it the second detivative
1)) The rote v chanpe F th 1 o
O = -6 + 12
: £, thee rate s
of the output function. At 1100 AN, thee rate
O"(3) = <63) 4 12 = <6 wits per hour per hour
(3) = = k. &

The minus sign indicates that the worker’s rate of production is decreasing. @,.,
is the -.rr:’l or s slowing down. The rate of this decrease in efficiency at g 1)
AM. iz 5 gnits per hour per howur.

(€) Note that 10 minutes i 1 hour. To estimate the change in the production rare Ot
Note that 10 min r

1 : : a
due to a chanee in 7 of Ar = . hour, apply the approximation formula from Sec.
- h J
ton € to the function Q'(r) to get

Change in rate of production = AQ' = Q"(r) At
1
Evalnate this expression when ¢t = 3 and Ar = 5 to conclude that

: 1
Change in rate = 0"(3)A = —6(—) = —1 unit per hour
of production e 6 7

That 1s, the worker's rate of production (which was 33 units per hour at 11:00
At will decrease by approximately 1 unit per hour (to approximately 32 units
per hour) during the subsequent 10 minutes,

{d) The actual change in the worker’s rate of production between 11:00 and 11:10

AM. is the difference between the values of the rate Q'(1) when t = 3 and when
Sl
=3c= rE 14t §s,

Actual change in ,[19 )
rate of production ~ < (?) -0

192 19 )
= [—3(;) - 12(—6-) - 24] = [=303)" + 12(3) + 24)

I

31.92 - 33 = ~ 1,08 units per hour

Thus, by 11:10 AM., the worker’

at 11:00 Am., will actually have
per hour,

s rate of production, whic

h was 33 units per hour
decreased by 1.08 units

per hour to 31.92 units

3

that the acceleration alr) of
ve of the velocity

Recall from Section 2
traight Jine | ot an object moving along 2
Straight line is the derivatj

v(n), which in tum is the derivative of

29
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i5.

Im
Plicit Functions and Their
\\\_‘
\When y is written as a function of (x4 Xm)
Yyree yAml,

—

Derivatives

Y= flxy,..0 %)
we say that y is an explicit function of (X1ye0s y Xm).

th Tthings are different when y and (xy,... , %) are combined in a single function so
a

f(X1y.0e yXmyy) = 0. (15.0.1)

If the x4,... ,xm determine y in equation (15.0.1), we say that y is an implicit function
of (X1y.44 yXm)

With luck, we will be able to solve for y in terms of (X1,... y%m). But that is not
always possible. For example, the quintic equation

Y —5xy+4x* =0

= i lution,
does not have an explicit solution, although we can say that'(x,‘g) cl(e1a ,r 1t)hxastags(% )u= >
as is (1/4, 1), suggesting that y(1) Z— 1 and g(’1t/4z =f<1)|: i:-ts also
hints of a function here, but we can't soive y .
Thxﬁjr:ethel‘ equation implicitly defines y in terms of x, b’ut we ca’r;aot‘wn%e cin‘:iﬁgﬂ =
sion for y(x), we might still be able to determine the derivatives. | 3 mp ki
Theorem giv’es conditions for finding local functions for y and their derivatives.

Uo
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\ MATH METH

' sunctiont Thether there even
151 1 there an Implicit Fun s determine whethe

z icult te
5 ] ‘\l\”‘.“ '['\‘h'lul
LU e wath equation (184

{ 2 gy? = 25,
4 saquation x s
T AT IR Anction voele. Consider the equ s
" . son for a Circle, s for y, obtaining
> Sm N I3 I N“"““ e ‘\' :‘.‘i‘h-  CAase W o can .';l‘l\' { e
-\\_‘\, tNR A N detine wixy n IS Ce

pix) = EV2H = X5

. ‘tion!
I T & 3 oty 2% . 1 hig is ot a ftund tie

4=

w

(3,—4)

Fgure 15.1.2: The cirde is the graph of x* + y? = 25, which tries to implicitly define y

35 2 function of x. As vou @n see, there are two solutions y(x) for most values of x. This is
dhstatedatx = 3.

Forvaluesof x (=5, +5), there are two values of y(x), not one. Only at x = +5
do we have a function. Everywhere else there are two values of y for every x. This is
ilustrated in Figure 15.2.2 where there are two values of Y corresponding to x = 3.

One way to work around this is to lower the bar, to give up the search for 3 global

function and focus on a locally defined implicit function, \We look for a function that
solves the equation in a neighborhood of 3 poi

s the . PoInt (xo, yg). We can use one function
near (3, 4) and another near (3, -4).

Ui
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CIT FUNC
icki TIONS A
15.2 Picking an Implicit Fu ND THEIR DERIVATIVES
nc 3

tion

l .
example 15.2.1: al Implicit Functio

ey Gefined by i

imp ICIL efine Ythe . !

(3,4): It can be defined oiu::.hon X242
the functiony = —(25 _ xz)ggn sels

For the function i
IN questi W
q on, that all works fine at most points on th |
e circle. However,

oth (5
(5,0) and (-5, 0), Neither point allows us to define a function

y(‘p\) on an Open inter\/a con ain
. 4 I ai '|| :(‘ is =
. in e

This is conn
ected with the §
ith the fact that the graph becomes vertical at those two points.

Ns on a Circle =
. Here
= 25an U P -.—-
dincludes the starting point (’:a }g ) "
140

as large as (-5 .
works for x ¢ (—5,5), T o) = Gy

s to implicitly define y s
are unable 10

due to the verticality of the graph of

x? +y? = 25, which trie
5,0) and (=5,0) pose particular problems s We

Figure 15.2.2: The circle is the graph of

2 function of x. The points (
write y as a function of x on a neighborhood ofx = x5

yatx=:i:5.
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MATHEMETHODS
Y g / | p?
15.3 The Implicit Function Theorem for |
The key resulp s the

Implicit Function Theorem, Here is o version for B2, The condition
(""G/"".U)l\‘u. Wo) # 0 rules o vertical ;;mplw At (Xoy 1u).

Implicie Fup ction Theorem for L, |of Glxyy) be a € function on a neighborhood of
(X0, Vo) € W2, Suppose that GOvoy o) = ¢, If

)3
f,~ ?-(.’m, o) /0,
gl

there exists a @ function y(x) defined on an interval 1 containing xq such that:
@) G(x,y(x)) = ¢ forall x ¢ |,
(b) y(xa) = yo, and

(@ The function Yy obeys

{(')chl (X[J) U{J)
/
Y'(xp) = -

: (15.3.2)
‘agl(xmy())
Point (c) follows from the Chain Rule once wé establish that y(x) is @', To see this,
just differentiate G(x,y(x) = 0, We then obtain
G dG
%;—(Xo, yo) -+ [55(7(0,}_{0)] y’('X.o) = 0.

Rearrange to obtain equation (15.3,2).
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15. IMPLICIT FUNCTIONS AND THEIR DERIVATIVES

15.
5.4 Using the Implicit Function Theorem
t; tEI::l?plle 152.4. | :zThe Implicit Function Theorem and the Circle. Fow does this apply
and o =Ir§5e X +'9 = 25 we studied in Example 15.2.1¢ Here we set Glx,y) = x* +y?

Heie Let’s try (xq, yo) = (3, —4) and see what happens.

0G

8_9'(3)_4) = —8 7& O\
33;}:’9' can apply the Implicit Function Theorem to find y(x) solving x? + [yx)? = 25

ithy(3) = —4 and y'(3) = —2(3)/2(—4) = 3/4. Compare to the solution y1 given by

Yi(x) = —(25 — x3)'2, Then
10 = —(1/2)25 — x3)7V/22x) = —m—s-

Then y3(3) = 3/4, exactly as withy. <
The Implicit Function Theorem will be useful for writing one set of economic variables
as a function of other variable. For instance, suppose we solve the consumer’s problem
for x and y as functions of

for prices p and income m. Can we write the demands
first order and second order

haracterize the solution via
cit Function Theorem to find whether we

prices and income? Once we C
equations, we will be able to use the Impli

have proper demand functions.
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MATH METHODS
I5.5 Implicit Function Theorem: Sketch of Proof hind
. » basic ide: nc
Afthough we won't dot every i and cross every t, we will cover the basic idea behi
e Implicit Function Theorem.
Sketch of Proof. By re
Also (@G/)xo, up) = 0 by hypothesis,

We may also assume (9G/d)(xqg,y0) > O
(othenwise, replace G by -@).
Now G e ¢!, :

on the squ

) -0,
placing G by Gix,y) ~ ¢, we may assume Gixq, yo)

s0 55 is continuous, |t follows that for ¢ > 0 small enough, 9G/dy >
are § defined by

S={xy):

Keeping in mind that 9G/By is bounded above zero on the compact set S
(Weierstrass) and tha

t Glxo,up) = 0, we may choose g5 > 0 sma_ll enough that
Gx,uo—¢) < 0 < G(x,Y0 + €) whenever Ix = X0l < g9. Now define the rectan-
gle R by

xg—ch_<_m+c,yn—€SUS‘JO+5}‘

R= {(xvy) : lx—-‘(ol < £0a|y —yol < 5}-
OnR, dG/8y > 0. Moreover,(x,yo+¢) € R with G(x, yo—
SetI = [x,

~ 0, Xo + £o]. Now G is continuous on
top and botto

mof R. Foreach x € [ the Intermediate
G(x,y(x)) = 0. Moreover, because G is increasing i
point y(x) for each x € L.

Now suppose x,, — x with Xn € L. Because Iisa closed interval, x € 1. Now consider
Yn = y(xn). Because R is a compact interval, there is a subsequence (xn,,yn,) that
converges to a point of R. Sinc

€ Xn = X, Xn, — x, and the only question is what is
y = limg yn, . We know G(Xny,Yn,) = 0and G js continuous, so G(x,y) = 0. Since
this equation has a unique solution in R, y = Y(x), Yn, — y(x). This means that all

convergent subsequences of y(x,,) have limit y(x), so limn ylxa) = y(x), showing that
Yy is continuous.
The only thing left to do is show thaty isa €' function on I°, As this i more technical
inating, we will skip that step. m

€) < 0and G(x,yp+¢) > 0.
R and takes opposite signs at the
Value Theorem yields a y(x) with
ny on R, there is only one such

than illum

ucC
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Page 1 of 11

Section 6.3 - Basic Integration Rules
alled an Indefinite integral.

T i .
he notation [ f(x)dx is used for an antiderivative of f and ¢

[ f(x) dx = F(x) means F'(x) = f(x)

In general, to find [ f(x)dx, we find an antiderivative of f(x), say F(x), and then we write the
indefinite integral as [ f(x)dx = F(x) + C . Here, C is called the constant of integration.

. b
If given fa f(x)dx, this is a definite integral and to evaluate we'll use Part 2 of the

Fundamental Theorem of Calculus: _[: f(x)dx = F(b) — F(a)

The Constant Rule for Integrals

[ kdx = k - x + C, where kis a constant number.

Example 1: Find of each of the following integrals.

a. [10dx

b. f:ndx
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Page p 4 of 11

The Power Rule for Integrals

Tavay w22

vy

b C,wherer » <,

Example 2 Find of ea h ol the following Integrals,

A [ atay

The Constant Multiple of a Function for Integrals
Tk f(x)dx =k J f(x)dx, where k is a constant number.

Example 3: f_ll 4x7dy
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The Sum/Difference of Functions for Integrals
JUF () £ g()dx = [ f(x)dx + [ g(x)dx

Example 4: fol(Sx" + 4x + 7)dx

x 427X
Example 5: [ —=dx

Lf 2
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Example 6:
a. j.{GFCf-4)di

b. [2x(x—1)(x + 1)dx

C. f 5x34x dx
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Other times we are given the derivative and an initial value and we are asked to find the
original function.

Example 7: Given f'(x) = 2x 4+ 2, f(1) = 5,find f(x).

Example 8: Given f"(x) = 6x+2, f'(0) =2, f(0) = 10, find f(x).

© 20
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Il

[ntegrals of Basic Trigonometric Functions: it
d c [ csc? x dx = —cotx - G

Sinxdx = —cog x + . R,
[ secxtanx dx = secx |

Jeosxdx =sinx + ¢ o G
fcscxcotx dx = —€SCX

Ssec?x gy = tanx + C

Example 9: [ sin x (cscx + cotx) dx

Example 10: f:/ 3secx tanx dx

Example 11: Given f'(x) = -3 sin %, f() = —1, fing f(x).
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Integral nf-:—
1
—dx = Injx| + €

X

- - 2 ?
Example 12 | X
»

Integrals of Exponential Functions

fe’dx=e"+c

ax
fa"dx=m+c,whcrea>0, a #1

Example 13: [(2* + 5e*)dx
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Integrals of the Hyperbolic Functions

Jsinhx dy = coshx + € [ coshxdx = sinhx + €

Re s _ e¥yemx eX—e~*
call: cosh x = S5 s Sinhx = :

Example 14; j: 2sinhx dx

Integrals Resulting in Inverse Trigonometric F unctions
ok it = ares]

7—dx = arcsinx + C J 7 dx = arctanx + ¢ it

xVaz—; dx = arcsecx +(

Example 15: flﬁ/ ZJT% dx
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Integrating Piece-wise pDefined Functions
x42 —-25X < 0

Example 16z Let f(x) = iZ. p<x =1
4 - 2x, 1ecx =2

Note how the function changes over the speciﬁed domain!
Set-up the integral needed to integrate ﬁz f(x)dx.

Integrals Involving Absolute Value

Example 17: f_21|x|dx

Y

Page 9 of 11
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Example 18:

a, f;"lx — 2|dx

b. [Clx = 2)dx
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Page1lof11

Example 19: Set up the following integrals.
a. _]'Isl.a\:2 — 3x — 4| dx

b. [)|x? + 4| dx
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CHAPTER 7

Techniques of Integration

§7.1. Substitution

ation, is more of an art-form than a collection of algorithms. Many problems

Ive the integration of functions given by complicated formulag, and practi=
ete the integration, There are certain methods of

les effectively. These arc: substitution, integration

Integration, unlike differenti
in applied mathematics invo
tioners consult a Table of Integrals in order to compl
integration which are essential to be able to use the Tab

by parts and partial fractions. In this chapter we will survey these methods as well as some of the idens
which lead to the tables. After the examination on this material, students will be free to use the Tables to

integrate.

The idea of substitution was introduced in section 4.1 (recall Proposition 4.4). To integrate a differen-

tial f(x)dx which is not in the table, we first seek a functionu = u(x) so that the given differential can be

rewritten as a differential g(u)du which does appear in the table. Then, if [ g(u)du= Glu)+C, we know
that [ f(x)dx = G(u(x)) +C. Finding and employing the function u often requires some experience and

ingenuity as the following examples show.

Example 7.1 f.r\/?.t+ ldx="7
Let u = 2x+ 1, so that du = 2dx and x = (u—1)/2. Then

fx\/Zx+ ldx =f"ﬂ:'l'“l/2%£ = %f (,,312_.“1/2) du

1 (2 5p_2 3/2)
LYY (T B +C
4(5" 3"

=

7.1
1
L2 (Qu-5)+C = 75+ 1) (6x—=2) +C
1 -
(1.2) = (2t 1R Ex=-1)+C,
where at the end we have replaced u by 2x+ 1.

Example 7.2 f tanxdx =7

187
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an
Chapter 7

\ 20 dnte
'& L0l Int Kratioy
| : 108
\ . o our gy
\ Y | = " Cy We roygy
| letting y = COSX, iy = ~Sinxgy ;W )l;b\ful (o (he definitioy Of the ¢
0Dty ngent: tany — sinx/cosx. Then,
| (7.3) / anxey = f .S_'.'L‘;“-l.__ fdu
| " Qg Y = = e I
CO8.Y " Iy +Ca Incogy +C = Insecx-C.
Example 7.3 Seexdy =9
This is trie

T ¥y and there are several wy
principle of rewriting in termg of

sitia ary ys'tu find the integral, However, if we are guided by the
PHS and cosines, we arg fof o the following;
(7.4) soex = i o SO cogy
cos.y
Now we can ry the

iy P
costy T |2 sin®x
substitution y = siny, du = cosxdy. Then

du
seexdy =
\

[ =u?"
This looks like a dead end, but u little algebra pulls u
(7.6)

(7.5)

,_

$ through, The identity

0 A )
L=w? " 2\1hu  1=u
leads to

(7 7) du

I
— X = -l-/ it Pl e
[ = 2 Lebu 1=

) du = -,E—(ln(l +u)=In(l=w)+C.
" 2

Using u = sinx, we finnlly end up with

(7.8)

l
/scc,\'dx = -zl-(ln( |+ siny) = In (1 =siny) +C€) = 3 In(

L+ .\"mx) e
| =siny
cyelold, A loop of the eyeloid Is tho trajectory

ntal line, 0 point on the eirele traverses a curve called the
U8 find the length of one loop of the oy

(' point us the cirole goes through one full rotation, Let
0 ‘ 3 N 0 e
loid traversed by a oirelo of tadius 1,
u w
Let the varinblo ¢ ropresent the ang
|

I‘ . l““" U“h(‘ t‘il‘\‘l(‘. i" Rl\“““s. il“\l s[;"‘[ (;" r — n\ \ l" u N
po IU ol ro {l ' ‘“i"v
' “'l.ll\'h l( i.\ I\ ¢
! RRIb] l
l

'tho oripl
e In now 1 unit to the right of the orig
(7.9)

120
Example 7.4 Ag o cirele rolls along o hotlz

0
A 4

Atter the cirele has rotated through
in fgure 7.1, The point of contact of the eirele with the
l\'L‘lI\ "hm:lpl‘lmlllm‘l (assuming no slippage), so
i po
[l wa | == QUSE
or) m £ sl LA intde, Tl
\ 08 {v e singdi, Thus
. . [....ul.\u')nh. o
T |18 oy, whero dv= { i
: ”"d " IUII]J,”i, W ups gL : : { -'I)JJ,IJ bt (.? w Deost)
(7.10, pE e QO8F) " oI
‘ I plv
0 dy . \/i(bl':-fti'ﬂfl'dl. and the are fonpth
(',,] ')

en by the fntepral
L

R4 /lM V1= vosidt
Ve
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L

grivs
/ \
1 8 3 & 3
\ ! /% \
) - eemy ,\".:/ v /I
§ E S -
{ f—inse

T," ,’““_'"'"""" this intepral by substitution, we need a factor of sinf. We can get this by multiplying and
dividing by v/T 4 coer: ' -

oo V1 =cosit _ | sint|

(7.12) - = —
V1 4 cost 1+ cost

By symmetry around the line 1 = , the integral will be twice the integral from 0 to 7. In that interval,
sin/ is positive, 5o we can drop the absolute value signs. Now, the substitution u = cos, du = —sintdt
will work. Whenr =0, u = 1,and whent = t,u= —1. Thus

-1 1
(7.13) L==2V2 /; ' Pdu=22 f w1 du = 2\/§(zu'“)\' =8V2.
-1 -1

£7.2. Integration by Parts

Sometimes we can recognize the differential to be integrated as a prod
differentinted and a difTerential which is easily integrated. For example,

(7.14) / xcosxdx

and integrate cosxdx separately. When this happens, the
may be useful, because it interchanges

uct of a function which is easily
if the problem is to find

then we can easily differentiate f(x) = x,
integral version of the product rule, called integration by parts,

the roles of the two factors.
Recall the product rule: d(uv) = udv+ veu, and rewrite it as

(7.15) udv = d(uv) = vdu
utting this all in 7.13:

In the case of 7.14, taking u = x, dv= cosxdx, we have du = dx, v= siny, P

(7.16) xcosxdx = d(xsinx) = sinxdx,

59

Scanned with CamScanner



wnuapier 7

€Xpressions in 7.18.
4. Integrate the neyw differential vay,,

Example 7.5 Fing f xdx.

Letu=x, gy= €*dx. Then du=dx, y=¢~, 7.18 gives us

(7.19) f P A f Fdr=xe—FiC.

Example 7.6 Fing / L dx.

The substitution z = X%, dv=e%dx, du=2xdx, v= e dossa’t immediataly solve e prodles. Bes
reduces us to example 3

- ~ - - 3 oy

(7‘20) /.r"’era’.r=xze’—2/.re’dr =I:€r—2(l'c':—:':+c:l =Xe—xr+le+C.

. 2
= Jv = d, so thatdu= (1/x)ax »
Example 7.7 To find [ Inxdx, we let u = Inx, dv=&x, s

1 ; /‘ x=xhy—-x+C_,
R Iln\— - b B
- | x—dyx =
(7.21) / Inxdx = xInx f Xz J
This same jdea works for arctanx: Let N
.. T —-:—;“ V=4
(7.22) u = arctanx, dv=@ax ¢ 1+
and thys T W
P X = yarctanx—3
N=Ae -
. | —=d
(7-23) fax-ctam':_‘-mc!am ] +x i Y
i 3% :--_—’1"". M S

s spnhstitutl
new su

sshed by the
Where the last integration is accomplished b)
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Integration by Parts

§7.2
Example 7.8 These ideas lead to some clever strategics. Suppose We have to integrate € cosxdx., We
see that an integration by parts leads us to integrate ¢* ginxdx, which is just as hard, But suppose we

inlcgmh:: by parts again? Scc what happens:
Letting u = %, dv = cosxdx, du = ¢*dx,v = sinx, we gel

fe'cosxdx = ¢"sinx — fe' sinxdx .

(7.24)
,v = —Ccosx, We get

Now integrate by parts again: letting u = e*, dv = sinxdx, du = ¢“dx

(7.25) fe'sinxdx: ¢ cosx+ fe'cosxdx-

Inserting this in 7.24 leads to
f_e" cosxdx = ¢ sinx — € cosx — fe‘ cosxdx .

g by 2 gives us the answer:

(7.26)

Bringing the last term over to the left hand side and dividin

‘ fe‘ cosxdx = % (¢*sinx — *cosx) +C .

(7.27)
Example 7.9 If a calculation of a definite integral involves integration by parts, it is a good idea 10
evaluate as soon as integrated terms appear. We illustrate with the calculation of
: 4
(7.28) | f Inxdx
1

Let u = Inxdx, dv =dx s0 that du = dx/x,v =x, and

4 4 4 4
(7.29) _ /mxdx:xlnx\l-[ dr=4ind—x| =4In4-3.
| 1

Example 7.10

1/2
f arcsinxdx = 1.
0

dx, du=dx[V1 —x%, v=x. Then

12 xdx

/ V2 prosinxdx = xarcsinr\l/ 2 f
0 Y

x2, du = —2xdx, leading us to

(7.30)

We make the substitution u = arcsinx, dv =

(1.31)

Now, to complete the last integral, let u = 1-
VL 1

i === - ~ - — = +— ) JF
B2 [; arcginxdx = 7 (6) + zﬂ W idu= T Tt 2
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— . i

m = b arctan ( 3
udy

¢ [ U

+C,

: by diﬂ"crcnlialing the righy hand Sides (or by in
. | “3 (0r by ug & previos ¥ (CChnignes
Mple 7.11 [ ¢ us illustrate iy, amexample we 'y, already seep, 7, 5 i -
“0. 10 find the tegry)
(7.33) [t
(.r-a)(:—b)
We check thay
(7.34) e (-
m a=b\r-a x<p)"
50 that
(7.35)

N T
/(I—a;'(i—b) =a:b(‘"l-f“"l-!n}-r—é.’)ﬁ—c:-—.

T
The trick 7.34 can b

d=b A=
N a& 3 produc o
EC1ors of the form X—=ror(x—a)?+b% where r is a real root sod the quadralic tenm
“Onjugate pairs of co

'r . ‘-r~', (VR ts thee N
mplex roo[s ’lc pu ﬂlll' me“OI] L'.\]'-IJ'.:J\.' 1 ALI0WS Us L Wlile 44 5 slealy

> . Fror nd thus the legration i
OmMig sas a sum of terms whose denominators are of these forms, and thus e eg i
TOposition 7,2,

H » ' izl ~ ( - N
e applied to any rational function. Any polynomial can be writ

-y-hl.l.‘-,.-\,”h‘_, 4
&0 OF Dy

ey “hs 4

Here jg the partial fractions pm(:::dt_:tfz:i dogree of the Aumeraior it 008 ke than the
v 1 j the degree ¢ au
“MIVen g rational function R(x), i b Gagres o1 86
f n, we cai
“Erce of the denominator, by long divisio

f ]

rd i{’ .ALA
(7.36) R(x) = ((3) + 4(3)

IR % I giline fi ),
o here pow deg p < degy. o e all distinet (U6
T lind the roots of g(x) = 0. I the 1o

. "the fonn
ritg P/ as & sum of terms of the .
y, s
] A ey L)
(1.37) == e+l

T .
5 lhnd the values ofd, #, C, , sosition 7
legrage term by term using Propt

v

-
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§7.3
Partial Fractions

shall resume this discussion later.

ted; we
find the coefficients A,B,Cin

If the -
roots are not distinct, the expansion is more complica
and how to

Fort
he present let us concentrate on the case of distinct roots,

7.37.
Example 7.12 Integrate f _oxdy
(x=1x-2)"

First we write
by A B

(7.38) ) _
(x—=1)(x=2) a x—l+x-—2'

Now multiply this equation by (x— 1)(x - 2), getting
x=A(x=2)+Bx—1).

(7.39)
If we substitutex =1, we get 1 = A(1 =2 = =1 i = —B(2—1,50B=2
and 7.38 becomes g ( ), 50 A= —1;now letting x = 2, we get 2 = B( , SO ,
(7.40) X =1, 2
x—Nx-2) x-—1 x=2
Integrating, we get
dx (x—2)?
(7.41 f___x__ k- _ " _
) GoDGE=2) Injx— 1|+ 2Injx—2{+C m‘r4\+c

So, this is the procedure for finding the coefficients of the partial fractions expansion when the roots are

all real and distinct:
1. Write down the expansion with unknown coefficients.

2. Multiply through by the product of all the terms x = r.
3. Substitute each root in the above equation; each substitution determines one of the

coefficients.
(x2 —3)dx

. t t —_—
Example 7.13 Integrate 21— D)

Here the roots are +1,3,s0 we have the expansion

x =3 A B C
(7.42) (xz—l)(x-3)=m+}_-j+x—3
leading to
(7.43) 2-3=Ax-1)x-3) +B(x+ 1)(x—3)+Cla+ D= 1).

Substitutex=—1:1— 3= A(-2)(—4), 80 A=-1/4
Substitutex=1: 1=3= B(2)(—2),s0 B= 1/2.
Substitutex=3: 9—3= c(4)(2),s0 C= 3/4, and 7.42 becomes

2 3 1
)_(—_) +(2) x—l+ 4)x-3’

(7.44) CENCEE 1) xt0
and the integral is
xt —3)dx 1 1 3
AP gy e 1 —lnx-—l+—1n\x-—-3\+C-
(7.45) [(xz—l)(x—a) Finfer 143 w=1+7
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C
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¢ xp(z—x) xp (€ +x)
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uo
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i e
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S10108} [8g; puyy ; Ue)o §+xp -
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xp SI°L aldlilexg
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§°3
N}r tial Fractions

S0, using Proposition .2

dx (v~ 3)dx
3145 "'2,/ (x=3)7%5

(7.53) (2x 4 1)dx
—— = ]
XY= fhHvd )4 f(‘-_

7.54 7 x=
(7.34) = —z arctan ‘\/; +In((x=23)2 4+ 5)+C.

Example 7.|sfﬁﬂﬁ =9
H (a4 ) )
S, ere we have to expect each of the terms in Proposition 7.2 to appear, so we try an expression of the
x+1 A B Cx

X x2+l+x2+l )

(7.55) L
x(x241)  x

Clearing the denominators on the right, we are led to the equation
(7.56) Xx+1=A(*+1)+Bx+Cx2.
Seuing x =0 gives | = 4. But we have no more roots to substitute to find B and C, so instead we equate
coeflicients. The coefficient of x2 on the left is 0, and on the rightis A+C,s0 A+ C=0; since 4 = 1,
we leamn that C = — 1. Comparing coefficients of x we learn that | = B. Thus 7.55 becomes

x+1 1 + 1 x
x(x241)  x  x¥+1 2+1°

(7.57)
and our integral is

(x+ l)dx 1
7.58 — 1
(7.58) G2 41) In |x| + arctanx zln(£+1)+c_

(2 + 1)dx

E A9 [ ———r = =1,
xample 7 / X2 —4x+3)
The denominator is x((x — 2)%+ 1), so we expect a partial fractions expansion of the form

241 4 B Clx—2)
(7.59) M —4x+5)  x G- 41 G224l

Clearing of denominators, we obtain the equation
(7.60) P+ 1=A((x=2)*+ 1)+ Bx+Cx—2)x.

For x = 0, we obtain 1 = A(5), so 4 = 1/5. Comparing coefficients of x> we obtain 1 = A4 +C, so
C=—1/5. Comparing coefficients of x we obtain 0 = —44 + B —2C, so 0 = —4/5+B+2/5, so

B=2/5and 7.59 becomes
X +1 Nl 2 ! 1y x-2

7.61 —_— e e ) 2 (D) —— o 2

(7.61) x(x2 —4x 4 5) (5)x+(5)(x._2)2+] (5)(.\'—2)2-%-1’
4
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5 Arctan(, 2.t Ine?
Multipje Roog 07 ey i
If the dcnominmor ;
to allow f 881bj); '," 1001, thy is
But then th re € partjy) ;;_mx*r faised y,, 4 powet, then we
ceree as myg| Sone Je h ‘ o ot

g Ove jp the cgs *=7) raised 1o the same power
Ower. Thig i besi expl  Ca chorq
Example 7.20/ 2+ 1)gy

Uadryyje factors) 4 polynomia) of
hrough 4 CW examples,

—

ow fi

We have 1 all or the ibilj
ritd Possibility op dterm of the form (4,2

CXpansion of the

+ 84 C)/, or, what is the same, 4p,
(7.63) bl Cil
\ |- — — ——
Px=1) =3 i i +x—l '
Cicaring of dcnominators, we obtg

(7.64)

in
X4 = A (x~ 1)+ Bx(x

0 we obtain | = C(-I)
Mpare coefficients of
-2, Equating coefficients of 2
is

-1)+C'(x-1)+ar3.

150 C = ~], Substilu!ing.r =],

==D. To find A and
Powers of x. Equating coeflicients of
s We have | = =A+8,508=]+4

Substitutingx =
We have 1o co

2 2 l 2
41 o Pt X
(7.6 X Sy
JS) XJ («l'- ’) X x X =1

Which yy Can integrate term by term:

. | de TP
(7-66) (x? 4 1)dx = =21n x| ‘.t_ *:—_’_ﬁ F2nfe— 1]+
K x=1)
14

4, Tﬂuonomulrlc Methods

woin order 1o yse 4 Table
» needs 1o kno , '
by, ulyy ;e all that one hile seeing how the Intey
101 . slechniques are A rthwhile s ? Ik
"‘Wc iy m E‘:' ip ‘;l;“‘% 'LL!“:-,‘- ‘ru olten, that s w,(:;mu'c function oceur quite fre
g Expre. rm w‘: ¢ i‘mym:h. v 1001 04U
by, © "Apre Blong jnye Ving the soguine , i " )
v - 2 0, We can convert o (i onometric functlons
W(:(a Wi Megrate Vi —-x? or VIxt? sot of a quadratio, we can ¢ g
' ‘u“ " * g soure 5
i, " CADroyuion. Involve a g 72
" by Wtions wugyepted by figure 7.2.

of Integryls,
tation formuylge are
quently in practice,
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, Wethendt

¢ =sinn, dx —cosudu, Y1 ==

/1 = xidx, weuse the substitution of figure 1IN

f\/ | = xidx= jcns’ udu .

(14 cos2u)/2:

Frample 7.21 Tofind |
cosy, Then

(7.67)

Now, we use the half-angle formula: cos?u =
sin2u
+C.

| 4-cos2u U
f l—x’dx-f-—i-——-du--z--}- 3

ouble angle formula: sin2u = 2sinuCosy =

(7.68)
Now, to return to the original variable x, we have to use the d
xv/1 =22, and we finally have the answer:
arcsinx  xV1— [
+ +C.

f\/l-xzdx= 5 3

tion of figure 7.2B:x = tant, dx

(7.69)
=gectudu, V1+3 =

Example 7.22 Tofind [+ dx, we use the substitu

secu. Then
j\/l-i-x’dx:jscc’ udu .

| integration by parts (see Practice Problem set 4,

(7.70)
hard integral, but we can discover it by ar

This is still 2
problem 6) 10 be
(7.71) /scc3 du= %(sec utanu + In|secu -+ tanu|) +C .
sect = V1+x . We finally obtain

7.2B to write this in terms of x! tanu =X,

f\/ | 4 x%dx = -12-(x\/ T 4+ IV ) +C

Now, we return to figure

(7.72)

Example 7.23 [ xV 1 +x3dx="1

b7
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Ouble- ang hy)f.,,

gle formy;

g
an2 (‘7 d
..ll) = §/“ —CCS(-S;."," du =
sin (4x)

I
1 g
§( -=2)+c.

L
- /
¥

/Sinzuc()szudu: ..1./
4

(7.75)

N()w Sin 3 .
s (4") - 25111(2!1) COS(2U) = 4SinllCOS!l(l _zsinzu) o _:‘“,rl—-__—.x: Ly

(7.76) / 3 arc;in.\'+.r\/l —».1:'( 1-2¢) e

- Finally

re.

For the remainder of this course, we shall assume that you have a wble
insi::;ow to use it. There are several handbooks, and every Caleulus text bas a wbje of integrals on the
oy ack cover. There are a few tables on the web: Gl
. “P://math2. org/math/integrals/tableof. htm
" ttp-’//m-rw. cahsl.org/lessonlcalc/table
httg_'ai:)le.of..intt—;‘grals .htm ewilibraryétaxthook

v, engineering. conl/c01|u11llfillt‘) ~;:.1; —w i
5 /calculus/calculus_table,int:.egx‘aib-;’;,, ,,i,.-;,a.iu,.‘ int
tp://www.maths .abdn,ac. uk/ - jrp/malllc/w
fode51 . hem)

O integrals ay A

1.4 - -
AN AN
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Chapter 4
Partial Fractions

indicating the divigion of

4.1 Introduction: A fraction is o symbol
woand are ealted Common

integers. For example, ']-;1. 2 are fraction
9 3
:;mt;‘m'n‘ The dividend (upper number) is called the numerator N(x) and
1e divisor (lower number) is called the denominator, D(x)
| From'lhc previous study of clementary nlpebra we have Jearnt how
the sum of different fractions can be found by taking L.C.M. and then add

all the fractions. For example

1 2 3 x
i) + =
x=1 x+2 (x=1)(x+2) )w
i) 2 1 + 3 9x% 45 x—3
x+1 (x+1)? x—2 (x+1)% (x-2)

Here we study the reverse process, i.c., we split up a single fraction into @
number of fractions whose denominators are the factors of denominator of

that fraction. These fractions are called Partial fractions.

4.2 Partial fractions :
To express a single rational fraction into the sum of two or more
n resolution.

single rational fractions is called Partial fractio
For example,
x+x=1_1 1 1
x(x-1) x x-1 x+1

2
X 5K Iis the resultant fraction and —1-+ berty : are its
x(xz—l) x x-1 x+1
partial fractions.
4.3  Polynomial: : :
f the form P(x) = anX’ T an-) XA L aXT
# 0 then P(x)

Any expression 0
a;x + ag Where ap, an-1, «-o00r 2 a,, ag are real constants, if an
is called polynomial of degree n.
4.4 Rational fraction:

We know that —E, q# 0is called a rational number. Similarly
q

: N(x :
the quotient of two polynomials D) where D(x) # 0, with no common
X

factors, is called a rational fraction. A rational fraction is of two types:
69
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SN
2

\
Y

110)
ULy

o Ay

I

3x% L0y
Improper Fraction;

4.6

A rationa] fraction N(x)

——

tlominator D(x)
For example

or N(x) is greater than Or equal to the de

£ .t
gree of the

G  2X°-5x2-3x-10

X2 -1
2
(i) 6x> —5x% —7
3}:2 0 ‘
1 by ",' - 1 - *u \r .l
An . rnre by division, as the sum of
2;011(5 l.111!31'0[)(31' fraction can be expressed, by
Olyno

Mial and a proper fraction.

8x — 4

3 2 ¢

6x ""Sx —7=(2x+3)+ .2—7\’—-1
3X2 - 2x - 1 \3 < .-5'__ 7 by _}_\"’- 2x — | then we
Which is obtained as, divide OX™ X 8.\'. -4

1 g oper fraction — i

iiu“I’Olyn(mliul (2x+3) and a proper I x* = 2x -1

iy

‘raction:
P"Uccss of Finding Partial Frac

i artial fractions as:
A 2 can be resolved into partial frac
Proper fraction .
o D"
) Ifip the denominator D(X

' its tial
U-repeating, its  partis

linear factor (ax + b) occurs u;_ld s

' ll L‘ B : » 3 0 1
‘: ction will be of the m
Ii

alue is to be determined.
nstant whose value is t
re A Is a4 Con
‘ux\ﬂTlWhL[L A i
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Note: The evaluation 0

Chapter 4
- | H" P;"!iili ’J.”!"’!i’j“

+

(I I in the deno

times, i.e,, minatar 1(x) n Hnear factor (az 4 b) Gecurs n

(nx 1 hy" Ry d it
DY, then there will be n partial fractions of the

r(\rn\
AL A "
e R L
\thl . A("X . h)" ("x | h)$ T (“Z : h)“
) ©
ll A2| A‘ e A
: prEmEREEES are consta {4 whone v o
(m)mc 1o be determined L are constants whose value
oceurs (::‘lln' the denominator D(x) u quadratic factor an 4o+ ¢
A;( iu]?.m non-repeating, its partial fraction will be of the form

ax2 +bx + ¢’ where A and B are constants whose values are 1o

be determined.

(IV) If in the denominator a quadratic factor ax? + bx * ¢
occurs n times, i.¢., (ax* + bx + ¢)" ,£then there will be n partial
fractions of the form

Ax + B, . Apx+By Ak + By
ax? +bx+c (ax2 + bx + ¢)* (ax* +bx +c) '
A x+ B,
(ax* +bx + )"
Where Ay, Ay, Az -------~ A, and By, By, B3 ------- B, are

constants whose values are to be determined.
f the coefficients of the partial fractions is based

on the following theorem:
If two polynomials are equal for all values of the variables, then the

coefficients having same degree on both sides are equal, for example , if
2 el
px’ +qx+a=2x _3x+5 VXx,then
p=2, 4= -3 and a=3.

48 Typel : Piok)
When the factors of the denominator are all linear and distinct 1.€.,

non repeating.
Example 1:
7x = 2 into partial fractions.

x -3 —4)

Resolve

Solution:

7x-25 _ A B M)

x - 3)x —4) x-3 x—4

Multiplying both sides by LCM.ie., (x—3)(x—4), we get
7x—25=A(x—4)+Bx—-3) (2)
7x —25=Ax —4A + Bx—3B

=
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~3)x -
Alternaive Moo Jx ~ 4

Note

'llun The R 1y 5 of equation (1) is the identity equation of L]
Ple 2;
w‘r.l :,"7\ - .,"
‘ c ) . . . , X . . c B —
the identity equation of (x =3Kx—4
0y ,
* The Identity equation of ( X~ 3 .
b
- " ‘—i . .
“ X—=3)(x~4) .
3,
ey, ‘

X ~ 25 i
(x\:: 4 e B

Since 7y
=25= 40,
Put X 4 = A('\""J)'i- U(,\'-.j)
0, =x=4 in ¢
_)7§4) ~25=A(4-4
“0=-25=0+p
B=3 0
PU[ X=3=
;3 0 = X =3 in equation (2)
(3)-25 =AGB-4)+BG3-3
21 =25 =A(-]) 4 ¢ '
- A=4
lence the required partial fractions are
_ Ix = 25 4 J

(X = 3)(x —4) x-3 x-d

Quation (2 )
) +B(4 -3

Y€ into partial fraction ;7 - |

'\‘ ,"
iy £
1 '{

] g =
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Solutios: 11—- __A B
X177 x-1 7 x+1
I = A+ 1)+Bx-1) (1)
Put = i
x—1=0, = x = 1 in equation (1)

1=A(N+1)+B(1-1) = A=%
Put x+1=0, = x = -1 in equation (1)
1=A(-1+1)+B (-1-1)
_ 1
1 =-2B, = B=3

1 _ 1 1
Xt -1 2(x-1) " 2(x+1)

Example 4:
6x> +5x* =7

Resolve into partial fractions 5
3x*-2x — 1

Solution:
This is an improper fraction first we co

and a proper fraction by division.
3 2
+5x° —
6x> +5x" =T _ (2x + 3

nvert it into a polynomial

3x?—2x — 1 x*-2x — 1
gx — 4 8x — 4 A B
Let — = ==y
x2-2x — 1 (3x+1) x-1 3x+1
Y(3x + 1) we get

Multiplying both sides by (x -1 0

ox_4=AGx+1)+BE-1)

Pt x—-1=0,= x = 11n (I), we get
The value of A
8(1)—4=A(3(1)+ 1) +B(1 - 1)
g—4=AB+1)+0
4=4A
= A=1
Put3x+1=0= X= —15 in (I)

23
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88 Partial Fraction

373
= B —-—2-0.)( .g =35
3 4
Hence the required Partial fractiong are
6x +5x 7
W~ (2x+3)+-+ >
Example 5: Sgeu e
Resolve into partia] fraction 527 8
X’ —2x? - 8x
Solution: 8x— 8 __ &-38 L7 8x =8
x’—2x% — 8y x(x2-2x - 8) xX(x-4)(x+2)
8x— 8 A B C
Let R R S

x’-2x> -8 x x-4 X+2
Multiplying both sides by L.C.M. i.e., X(x —4)(x +2)
8x -8 =A(x—4)(x +2) + Bx(x +2)+Cx(x-4)
()

Put x = 0 in equation (I), we have
g (lon) i = A0 - 4)(0 +2) +B0)(0 +2)+C(0)(0-4)
-8=-8A+0+0

P:u>t X 4A== 01 — x=4in Equation (I), we have

8(4)-8=B@)(#+2)
32-8=24B
24 =24B
;;x +I23 —(; = x=-2 in Eq. () we have
8(-2)-8= c-2)(-2-4
-16-8= C(-2)( -0)
24=12C
> (C=-2

actions
Hence the required partial fract
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— ) Puttinl Fraction
8x -~ 8 | |
X =2 w R T )
=B X Nl x 12

xerclye 4,1

Resolve ingo pavtinl feaetlon;

Q.1 ——2-}_'.3___ 0. 7}( * §
(X =2)(x +5) K6
Q3 3x* - 2x -5 _ 0.4 )k =2)(x~3)
(X =2)(x + 2)(x +3) | (x )k~ 5)(k=6)
Qs X i b
(X =a)(x=b)(x—¢) e (lr-.tx)(l I)x)(l c/)
3 L2,
Q7 2x7 = x“+ 1 0.8 | |
(x+3)x-=D(x+5) (1-x)(1=2x)(1=3x)
6x + 27 9x* 9% 4 6
' .10 :
¥ o 0 G-+ )
4 2% 4 x? =% =3
X
A2
QI -2k -3 O - ax+3)
Answers 4.1
1 I 02 ] .i. ]
Q x—2+x+5 " x+2 x+3
3 b 11 N 28
Q3 20(x-2) 4(x-2) 5(x+3)
3 24 30
Q.4 1+x i —=*76
a ) b 5 ¢
W Goa—ox-a) (b-a)b-c)x=b) (c-b)C "2“)(" <)
az I)z + C
Q6 (a—b)a-c)(]-ax) * (b—a)(b=c)(1=bx) (c—b)(c—a)(1-cX)
74
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artial Fraction

Chapter 4
91 P

i-eh
=141=2
z ; A=2
nce t i i
. 1¢ required partial fractions arc
X“=3x+1 2 1 1
DD %ol G K2
x—2) x—-1 (x=1)* x-2

Example 2:

Resolve into partial fraction ————1 l
x'(x+1)

Solution

C E
3

D
+-——4'+
X X x+1

1 _ é_ N B "

xtx+1) X x>
. Where A, B, C, D and E are constants. To find these con
multiplying bot‘r:xs sides by L.C.M. e, x (x+1),we get
1= A+ 1)+ Bx* (x + )+ Cx x+1)

o
Putting x = —1in Eq. @
1 =EB(-1)

= E=1
Putting x =0 in Eq. (I), we have
1=DO0+1)

1=D
= D=1

1= A+ CHBE + O+ KD+ 1) +EX
nt of like powers of x on both sides.

A+B=0

stants

+ D+ DT Ex'

aring the co-efﬁcig

Comp
Co-efficient of X :

()
(i)

Co-efficient of 2. B+C=0

Co-efficient ofx : C+ D=0

(i)
Putting the val

ueof D=11n (iii)
c+1=0

—
— e

is value in (i), W€ get
B-1=0

—
Putting th

= B=1
Putting B=11in (i), we have

A+1=0
=> A=—1

e ———————
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AR’ P -
¢ o0 9
aq JjIA HONORI] jennd pannbar i 23y
| =4 o
R
0=HE+9~
0=fE+VY

capIs 110q 1o Z.Y]() JUAI211[2-00 2] 3U!Jndwo;)
(¥ a 7))+ (_\'{ + XC & Z)H-é- ([ + X7 + Z-Y)V = X[ + 12
‘ £=0 —

Je=f~

(1<) =L-¥

X (€=2)0=(~)L+¥

pPIam () baurj-=x &= 0=X+[ ng
==V

[
== =X—=
6 - \4 =

£
Du—— _x
(€ 4 7)o (x Z = 0=X¢+zng
4 1) &E”,f}ﬁ POy oy, 3
: (x4 1) oy Q;I DT 4q Sapis noq Stmq:lan,:;:}
P —— e — ¢ X '
D g Ty N+ Dixg 4 )

| ‘uonnjos
Oldey [%1ed OJt IN[0s)
Iy ¢ y ?’

| +X yh’ X

W —— ol ¢ ’ - ’ |
—-.‘——-—-l ’ l T " o — ‘ —— (‘ * ' F \' |
| ' l '“ z h\..\_;
2 e UUI e } ) [.1

uoel ey ———

59
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Chapter 4
R Partial Fraction

e ——————————

. Exercise 4.2
esolve into partial fraction:

Q1 e 02—
(x=2)"(x+1) C =D
ax? 2%+ |
(x+ 1) (x*-1) (x + 3)(x=1x+2)
6x* ~11x - Pox-
Q.5 X“=11x 322 0.6 X =X 33
(x +6)(x+1) (x=1)
5x24+36x —27 4x* =13x
A 3 2 Q8 V>
x} = 6x7 +9x (x +3)(x—2)
* % —8x* +17x+1
Qo —H Q.10 3
x“(x=1) (x=3)
x2 2x + 1

Q< (x +2)(x ~3)?

U TP x+2)

Answers4.2
1 z_ 1
Ql T 3k-2) (x-2)2  3(x+1)
) I TEMNERLi s o
Q2 5Ty AxrDh 26D

2

1 7 9 s

Q3 2(x—1)+7(x+1) (x+ 1) (x+ 1)’
5 P4 +__‘;

Q4 T(x+3)+ﬁ(x—1) 3(x +2) (x+2)°

0.5 10 4 ____m3

5 736 x4l (k=D

Q.6 i N 1 3
R SV § (x —-1)°

2 3 2 14

—— o S—— -‘-

x %t (x=3) (x ~3)*

Q.1

Q.9 3 + ! — 2 .
x+v3d x-2 (x-2)

A
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Containg ir-rcducib!e

Quadratic factors

Oy
jal fructions 2 Z
(x+3 Nx® 4] )
Soluu'on:

Ox — +
X 27 _ - B.:c C
(x+3)(x +1) x+3 X°+]
Muhip!ying both sides by L.C.M. Le., (x +
X=T7=AM+ |

INE+ 1), we

¢ Lot
)+ (BX +C)(x + 3) n
Put x4 4. 0 =, X=-3inEq. (1), we have
9(-3) -7 = A((-3)" + )+ (B(=3) + C=3+3
=27 -7 = 10A + 0
34

— T —— —:—} ;
10 ) - o N
Ox - 7=A(x" + 1)+ B(X"+ 3x) + Cx +

. JH . i i buf ‘1i|ft.":
CumPuring the co-efticient of like powers of x ¢ ih
AtB=0
IW+C=9 »
Putting vajye of A in LEq. (i) [ 17
17 b= -
~-—tP=() l )
5
Frop, q. (i) (17
C=9=38 =93 =)
6 |
] 51 ( 3 /

‘
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Chapter 4
~__Partial Fraction

— 05

Hence :
the required partial fraction are
-17 17x ~ 6

.{_
S(x+3) 5(x*+1)

Example 2:
Resolve i ' ot
olve into partial fraction —-
x* x>+ 1
Solution: I
.2 2
Let 4'\ 4; L - X *
xPaxI el (xE-xF D HxH)
2
x2 +1 _ Ax+B Cx+D

(x2 -x+ 1)(x2 +x+1) - (x2 -x+1) (x2 +x+1)
Multiplying both sides by L.C.M. i.., % —x + 1)(x* +x+1)

¥ +1=(Ax+B)x*+x+ 1)+ (Cx + D)(x*—x + 1)
_efficient of like powers of X, we have

Comparing the co
Co-efficient of X’ : A+C=0  oeireeeen (i)
Co-efficient of x> : A+B-C+D=1...ccceene (i)
Co-efficient of X A+B+C-D=0.cccceen (ii1)
Constant B+D=1 e (iv)
Subtract (iv) from (i1) we have
A=C=0 -, o g o EesRR (v)
AmC g e wesssiats (vi)
Adding (i) and (v), we have
A=0
Putting A =01in (vi), we have
Putting the value of A and C in (iii), we have i
B-p=0 e (vi1)
Adding (iv) and (vii) 1
2B=1 — B >
from (vii) B=D, therefore
]
2
Hence the required partial fraction are

I
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—d e A

8
% .
Partial Fraction
OX‘F-I_ 0 ;.1
X+ —
et 2
ie 1 K O xh)
L
E ) 2(x%+ 5 + T
Resolye into py ,x,e"‘-‘lsc 4.3
x? 4 3y IP ral fracgio,
(x=2)x*+5) Q2 | _X'~x+2
Q.3 3x+7 (X + x4+ 3)
(x+3)x%+ 1) Q4 +
Q.5 1 (x*+1)
&+ D& +1) T o 3:;(72
2 X X“—4
& (3}(&2“_1 Q.8 X+a i
g )(x°—x +3) Xz(x—za)(x2+a2)
Q.9 x4—1 Q.10 2 X"+x+] 4
(x ~x-2)(x2-2)
Q” -—L__ Q12 X2+3x+3
X3—] y 2N
(X2 =1)(x*+4)
Answers 4.3
Q'I .—1 + 3 Q2 I i 71
X=2 x%*45 Xl ixt+3
03 1 x+12 04 A (x=2)
5(x+3)  5(x%+1) D3t 3(xT-x+1)
0s 1 X~
20x+ 1) 2(x*+1)
X+31
046 13 1 8+

-~
— p ) 4r‘,_'." .
28(x-2) 12(x+2) 2104
' 2%x-2

X )(2--')(~l~3

( . a
“‘ J 1 A ) __/_ p—h -"":;‘ l
lr ) .‘— "“:T""'—‘T - \; p, ..

tl‘ X— (l X“ 'f' (‘h Fi
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Chapter 4
—37 Partial Fraction
Q9 x+—1 | X
14(-“ =) 4(x+1) 2AxE 1)
Q1o - bt 3x+2
(X+1 6(x~2) 2x?-2)
Q.11 1 _x+2
3x=1) 3(x?+x+1)
Q.12 7 1 Ix -1

10(x=1) 10(x+1) 5(x2+4)

4.11 Type IV: Quadratic repeated factors
When the denominator has repeated Quadratic factors.

Example 1:
X2

Resolve into partial fraction ==
(1-x)(1+x7)

Solution:
2 A Bx+C Dx+ E

= + +
—x  (1+x3) ()
(1—x)(1+x*)* on both

X
1-x)(1+x*)’
Multiplying both sides by L.CM. ie,

sides, we have |
2= AL +x2 + Bx+ )1~ x)(1 +x)HOx + E)d - N (i)
2= A+ 2 +x) T (BxF C)(1 —x+ 2= O)HDx + EY(1 -X)
Putl1-x=0 = X7 1 in eq. (i), we have
(17 = AL+ (1)’
1=4A =
2--A1+2x2+x)-i‘B(x--x"—M;—‘{)+C(l—\k-\—x“\ "
........................ (it

¥ D(x—x2)+ E(l -%) . :
Comparing the co-efficients of like powers ol

Equation (11), we have ‘
Co-officient of X' A=B=0 e )
Co-efficient of X B Cm0 sosnninnsaneness (\ﬂ
Co-efficient of X IA-B+C-D= PR (l'l\)
Co-efficient of X B_C+D-E=0 e (iv)
Co-efficient term A+CHE=0 e (V)
from (1), B=A
Ll g A
4 4
Q3
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Chapler 4 hs
h 2 | |
Partial Fraction
from (i)

B=c
= =l |
3 4 0 C = e
from (1ii) 4
2A~B+C I
- | O |
ok
= D
from (v) Harata
E = "l—l:: _.l
Hence the requjreq WAL D)
B.C.D.E, quired partja] fractiopg are by putting the valyes of A
1
"4“*'“24+Q
I=x I+x (1+x%)?
1 h (x+1) X+ 1
H=x) 4(1+x%) 21452
Example 2:
g X2 +x+2
Resolve into partial fractions
° g x2(x? +3)°

Solutiop:

2 B Cx+D Ex+F
L 5 7XT =é+7+ Ton 2 +3)?
x2(x?+3 x x* x+3 (x
i 2(x% +3)*, we have
M”hfpf)’ing both sides by L.C.M. 1.¢, X( 3;3) WO ave
+3) 4B+
X +X+2= AX(X )2 3)1_([\”)( )
H{ox +DIX(C+
P Utting x = () on both sides, we have

2= B(o+3)
2=9B =

. +B(x 6 +9)
..‘,.XZTX i AX( +6X +9)

24 (%) fx’
D 1
5
+C(x +3X" )

443x%)
(x Y
|3(,"|'|‘,).\
J‘2*X'2—(A+C)x +(B+DN e
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f Chapter 4
! %

| Comparing th
| (1), we have

| Co-cfficient of x°
:: (1)
| Co-cfficient of x*
| (i)
,f Co-efficient of x*
r[ (i11)
] Co-cfficient of x2
(iv)
Co-efficient of x
)
Co-efficient term
(vi)
from (V)

=

T ——

f from (1)

Partial Fraction

‘*'((’B'*‘:}D‘l-]?)xz +(x+91)

€ co-cfficient of like powers of x on both sides of Eq.

.........

A+C=0

---------

B-D=0

---------

6A+3C+E=0

---------

6B+3D+F=1

9A =1

---------

IB=1

. B+D=0
I from (1) pD=-B
=
from (iii) 6A +3C T E=

=4
from (iv) 6B +3D *F | -6B-3D
2)5)
“ =l—-6('§)_— 9
]
| 2%
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A

Partial Fraction

1 2
=— 1. % x+2 X-1
X9 9nTL3) 3% +3)
: Exercise 4.4
Resolve intg Partia] Fraction: .
Ql . :
(x +1)(x% +2)? b ;
iy ey
Q. x(x? +3)2 04 = ey
‘“4 “2 X =12 +x +1)2
Q35 2x"~3x —4x X -15x° -8 z
o l)(x2+2)2 Q.6 X'
(2x=5)(1 +x)?
3 9 QS8 X
(x=2)(x* +3)> (1-x*)(1+x%)?
Q9 X +x’+2x%-7 o
(x +2)(x? + x+1)* K1) +4)?
.
x*+x? 41
Answers 4.4
Q.l K 7 7:‘"’7 K ___7_",“’_.___7;—
| o(x+1) 9(x2+2) 3(X*+2)
1 Sl s St I
4(1+x) A1 +X2) 2(1 tX )
S——t—
X x*43 (x'3)
=y 2

———+ )
¥-1 T grexe1 (R
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€ 0 Chapter 4
101
g Partial Fraction
O Q.5 —t S(x~1)
' +=—="1  2(3x~1
3+ 1) 3
) 5 (*+2) (x4 )2
Q6 - L$ X3 x-2
2x -5 1 + X2 o Pr——
1 (1+x%)?
Q71— X2 Txri4
xl—z X743 (x? +3)’
Q3 o ! 42 4
]x T4+x 1+x2 (1+x%)?
Q.9 + 22x -3 1
X+2 (x+x+l)’ xPaxc+l
,f Q.10 o 2
| 9(x* + 1 2 t o2 L
x*+1) 9x*+4) 3(x"+4)
Q.11 - (X—l) + (X+ 1)
2x2—x+1) 20 +x+])
Summary
. N(X) .
Let N(x) # and D(x) # 0 be two polynomials. The D( is called a
X
proper fraction if the degree of N(x) is smaller than the degree of D(X).
x—1
For example: ———— 15 @ proper fraction.
! PP X2+ 5x+ 6
! 1
SO —l\-r—(-)i—-)-is called an improper fraction of the degree of N(X) is
greater than or equal to the degree of D(x).
5
l For example: —-}—— is an improper {raction.

| In such problems we divide N(x) by D(x) obtaining a quotient Q(x) and a

remainder R(x) whose degree is smaller than that of D(x).

h N(x)' X)' L
4 Thus ) = Q(x) + B-g—)-(-)-whcrc E-(—)—is proper fraction.
P D(x) D(x) D(x

Types of proper fraction into partial fractions.

Type 1:
s Linear and distinct factors in the D(x)

3_?.
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I ¢ /) : ;
e e L L Partial Fractic

Chapter 4

X—a
S o R .
(x + a)(x + h\-hi
X+b) x4 4 Xx+h

Linear repeated factors ip D(x)
X—a A

Lt s Bx+C
2 G e
(x +a)(x +b?) X+a+x2+b2

Type 2:

Type 3:
Quadratic Factors in the D(x)

D L A Bx+(C

—
—

PR ‘ +
(x+a)(x2+b)2 Xtar xtany?

Type 4: g TR -
Quadratic repeated factors in D(x):
s e T Ax+B Cx+D Ex+F
T : T = G s
EA T a)EMDA) P e 2 +b? (2 +bP)

<0
o
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Write the
short answers of the following;
Q.11 What is partial fractions?
Q.2:  Define proper fraction and give example.
Q.3:  Define improper fraction and given one example:
4% Headlved ‘ _ 2X
Q.4: €solve 1nto partial fractions

(x-2) (x+5)

. : : 1
Q.5:  Resolve into partial fractions: 77_J

Tx + 25 . . .
Q.6: Resolve &+ 3+ ) into partial fraction.
1 . -
Q.7: Resolve Z-1 into partial fraction:
x>+ 1

' ial fractions.
Q.8: Resolve &+ Dx-1D into partia

8 X
; ' — T o
Q.9: Write an identity equation of T-O)(+x )

2%+ 5
Q.10: Write an identity equation of m

-5
SRR L X2 e
Q.11: Write identity equation of T 1)(x2 T3)
i 6 +5x -1
' ion of ~2%=1
- ] identity equation 0 —’f””3 =
Q.12: Write an it o x-36)
i e equation Of Tx - 4) (x - 5) (X~
Q.13: Wnte an identity €4 ( :

X

. R
Q.14: Write an : dentity equation O x -

9%t - 3% - 4X
_’_,__——""_'r’—-i
equation Of'_ (x+ (X +2)

) 37
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ClldpLer 4

164 Partial Fraction

QI16. Form of Partig] fraction of :

o 1§
X+ 1)(x -2)

Q.17 Form of Partial fraeqio, of I '
1S
| X+ 1)*(x-2) " —
.\ Q.18. Form of parjy fraction of I .
-\———-IS
(x* +1)(x-2)
Q.19. Form of partia] fraction of 1 '
1S
(X* + 1)(x - 4)2
Q20. Form of partial fractiop of 1 i
(o’ -1)x2+ 1)
Answers
4 10 1
. oy o | L - 1
W &) T s
4 3 1
6. T s = "_1——- I
R Ry J V20" -1 55D
1 T AT B CxAD ' Ex+F
®B. 14 0 R U [+x° 7 (1+x)
A B _ A Bx+C
Q10. o i Qll. 3T v ¥+
4 B A B C
e v oy S vy

QI2. (2x +3) +-—= [t er U3

"B Cx D LAW:, TBx Dx+E
Ql4, x + Al + }\?l + Xhz'l'l QI5. X +1 t x+2 T (X~ +2)*
x- P owf-

Qg Al+r ]32 Q17. Xt (x+D? x=2
= ': X X

0 | g, Ax+B C QI a7 Tx—1 -1
\ x4+  x-2 |
02y _ A Bx+C  DxT2

Scanned with CamScanner



Chapner e

Q.1

.

e P0rtind Praction
Objee S

tve p
I'ype anullunn
Each questiong h

y M ' r YOu: \
il‘ll']hlwu and eneire) it, Poaible inswers, Choose the correct
the depree of Numeryop N
of denominagoy D(X), they | Ex) W equal or greater than the degree
() proper ' the fraction jg:
(c) Neither pr (b)
roper nop.j

{ e mproper (d) Bot
I the degree Of numergyor i less than )lh'
then the fraction iy S
(a) Proper
(c) Neither proper non-improper

The fraction 2X + 5

5 s known

08 foy

improper
h proper and improper
legree of denominator,

(b)  Improper
(d) Both proper and improper

X+ 5%+ 6 as:
(a) Proper (b)  Improper
(c) Both proper and improper  (d)  None of these
+27
The number of partial fractions of -(l)%— arc;
4x” =9x
2 by 3
(3 4 ‘ (d)  None of these
( X =3x%+1
o o s ot are:
The number of partial fractions of D+ ) 2 -1)
by 3
(a) i @d 5
(c) x+11

1s:

The equivalent partial fraction i (x + )(x -3y
A

A B ® T3

-3
b — x+1 X
(a) <+ 1 (x--3)2 A +]3X+C
+_.]_3——+-—9"'E e R
©  Tr1 x-3 &Y A
188
ia] fraction of == 2 +3)
: ¢ partial frac x* + &
The equivaler Ax+B  Cx
ax+B, CxtD Ol Tyl
@ T KF3 Ax , BX
AX+B+CX+D @ T K43
(C) 1"".2_’:? x+3
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artia] Fraction

8 Py tia] ﬁ'acuon of — 2 is:
X(X +1)
o)
: X+ ] X XxX+]
2 )
© .2 @ 2.2
X X+ X Xx+]
. : 2X +3
9. Partig] fraction of ' )
. = 1S called:
(X=2)(x + 5)
9
(a) GO + —-l._: ('b) '—i~ — "—-1——-
X-2 x+35 X=2 x=+35
2 3 1 1
c ot d Xx—2 T

: @—D@-Q@-@. .
10. The fracy e — e oo ———=1is called:
— he fraction (x——4)(x—3)(x-6)

(a) Proper (u) Ifllpmpf‘r' ‘
(©)  Both Proper and Improper  (iv)  Nope of these
Answers: i . # L e )
6 D Sy 3 ana 9 d 100 R
- c 7. c -
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DEFINITE INTEGRALS
\

n the prcviOUS 165.5 on we have discussed the anti-derivati
1:1’)" word integration means to have some sort of symm
3

tlYC, e, integration of a function. The
ation or combining of results,

Now the question arises :dWhy do we study this branch of Mathematics? In fact the integration
helps 1O find the areas under various laminas when we have definite limits of it. Further we will

see that this branch finds applications in a variety of other problems in Statistics, Physics, Biology,
Commerce and many more.

[n this lesson, We will define and interpret definite integrals geometrically, evaluate definite integrals
using properties and apply definite integrals to find area of a bounded region.

B onsrcnvs|

After studying this lesson, you will be able to : N |
define and interpret geometrically the definite infegral as a limit of sum;

., evaluate a given definite integral using above definition;
state fundamental theorem of integral caloulus;

] ite integrals :
' o5 for evaluating definite mte
. state and use the following properties : X " +c§f(x)dx

b a ) dx (i) jf(x)dx =§f X |

0 ]f(x)dx=—{f(x | |
a
i J?f(x)dx+if(2a-x)dx

)dx =

(m) !;f(x ! !

i +b-—x)dx

b
) if(x)dx .-:];f(a

a

=a f(a -—K)dx
o) ](;f(x)dx!)/ s

MATHEMATICS a3
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2 n ""i‘,{‘_
(\’i) f1f(,\')r{x:?2ff(.\’)d,‘( if'f(2:i—x)=['(x) \3
0 0

=0 (20 -x)=~F(x)

a a
(vif) [t‘(,\- )dx = 2[ f(x)dx if fis an even function of x
-8 0
=0if s an odd function of x,

apply definite integrals to find the area of a bounded region,

' EXPECTED BACKGROUND KNOWLEDGER

l\nowlcdgc of integration —

Area of 3 bounded region

Fig, 27,5

1 c any re . .
g1on
"y addup g theso g ¥ Subregions of s

45 10 get the area of the

Nction
¢ Values (o, the (;;ﬁned on the Closeq j
Nction 4y, Intery,
e

€ X-axis (Sea € nop. val [a, b]. For
(See, F 12.27 3) n negatxve, SO that the glt:;hpzefs:;:’
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MODULE .y
Calculus

i
ANl

O
[+

Flg.273

~onsider the region between this curve, the x-
ons

od region in Fig.27.3. Now the problem

axis an :
d the ordinates x =5 and x="b, that is, the

chad is to find the are
1 a of .
iy order 1O solve this problem, we consider three sp the shaded regjon.

: ‘ . ect
angular region and trapezoidal region. al cases of f (x) as rectangular region ,

Tho area of these regions = base x average height

In general for any function f (x) on.[a, b)

Area of the bounded region (shaded region in Fig. 27.3 ) = base x average height

The base is the length of the domain interval a, b). The height at any point x is the value of f(x)
ot that point. Therefore, the average height is the average of the values taken by fin {2, b). (This
may not be so €asy to find because the height may not vary uniformly.) Our problem is how to

find the average value of fin [a,b].

27.1.1 Average Value of a Function in an Interval

If there are only finite nmnbér of values of fin [ a,b], we can easily get the average value by the

formula. |
thevaluesof fin [a,b]

- _Sin_io_ff///
Average value of fin [a, b]= Numbersof values

' , b}, How to find the

re are infinite pumber of valu o we resort 0 ostimate the

But in our problem, the e B
average iniuch a case? The above formula does not help

average value of £ in the following way: ) ool fata < £(e), Wetake s value,

First Estimate : Take the )
namely f (a), as a rough estim

Average value of fin [a, b]
Second Estimate : Divide [8 b1

. nh="75
Let the length of each sub-interval b€ 2

. 50
Take the values of fat the left end PO’ ‘.
aC
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MODULE -V [ (Fiz. 274 P
Calculus P
!
/\\) ‘(a) !(‘uh)';
- _ |
|
Note ,', I i i
I ,
6 (a+1)
Fig. 274

Take the average of these two values as the aveage of £ [3, O}

Average value of f'in [a, b] (Second estimate)
’ L = b - a
:f(a)"{(“”'), h = 2
: | f
This estimate is expected to be a better estimate than the first,

Proceeding in a similar manner, divide the interval [a, b] into n subintery als of lengty

- . b— ﬂ | h
(Fig. 27.5), h = |

n

Take the valyes of Tat the lef eng points o

The values ar, f
kel €1(a), f(a ) f[a

Average valye of I'in [a, b] (nih estima

_f(a)+r(q +h) 4

{'the n subinterva!s.

---------

For larger values

()f ey . . " n
il d n, (iif) js CXpected to he 4 1y ;
y by € a beyter estim

(iii)

ate of what w,
I Thus, we get the following e seck as the average

Sequence of pgi ag fin [a, b]
.S“nmrcs f()l‘ ‘hc avey .
't. age Vﬂiue Of L [ ‘

\

74 MATHEMATICS
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| MODULE -V

() C
alculus
\{t('x)*“f(a it b-a
; how -2
2 2
\[{'(:\)‘Lf(a +h) H(a -th‘ | b-a
A 1 S
3 3 Neites
LK{‘(;\)-{*“('&‘*‘“)‘*‘ -------- +r{i\ +(“"\)h}] h__b—i\
n ' -
n
oo farther and farther along this sequence, we are going closer and closer to our destina-

WC B !
9 amelys the average value taken by fin {a, b), Thcrcforc, it is reasonable to take the limit of

syt i D \ '
i . atos as the average value tal
hese cstimates a Be value taken by f in {2, bY. In other words,

\yerage value of fin [a, b}
| |
im —{f(a)+f(a +h) +f(a Qn) 4. pfa (n 1yhYY,

n—o n

b-a
n

h = (iv)

It can be proved that this limit exists for all continuous functions f on a closed interval {a, b].
Now, we have the formula to find the area of the shaded region in Fig. 27.3, The base is
(b - a)and the average height is given by (iv). The area of the region bounded by the curve £

(x), x-axis, the ordinates x=aand x=b

0 —a)r}i_r)nw%{f(a) #(a ) £(a 2h) 4. fha (= D)),

1 b-a
im—|f(a)+f(a+h)+. ... .+fla+(n-1)h}h=—n
i (£(8) €8 +0) # o 2+ (0= 1Y) = 2 ®
We take the expression on R.H.S. of (v) as the definition of a definite integral. This integral is
denoted by

b
Sf(x)dx

b

¢ad as integral of £ (x) from a to b'. The numbers a and b in the symbo\s T(0) & e called
1\

"eSpectively the Jower and upper limits of integration, and f (x) is called the integrand.

?ute * In obtaining the estimates of the average vatues of {in {a, b}, we have taken the left
" points of the subintervals, Why left end points?
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e ——

[

MODULE -V mbimgr{'al.é through

f(a 2h) #.. f{(b)} h_b
Calculus b Tipga +h) i (a  h<be,
[r(x)dx= (b ) lim = Lir(: by

K\ n = lim h[ f(a+ h)+ fat 2”)"' """ +f (b)]

h-+0

2
m !-‘indj\' dx as the limit of sum.

l
Solution : By definition,

a r}’

b-a
n

h =

Herea=1,b=2, f(x)=xand h =i
n

,jxdx",,’i,”;;[f(r) +f( TI)/ Frnei ﬁkl gj#j]

I~
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A o
Find | ¢* dx as limit of qupy, MODULE -V \
0 Calculus \

B\’ dcﬁ““iﬂ“

e
Cpim W(EQ) HTC) fGaany fla (n 1)w))

L. \ \1\ 7 h-—)n
A\

h—2
/

h =" q

2-0 2
efandh =— o
0.b =2,f (%) -

- hm h{£(0) +E(h) € () +.. #(n Bh]

= lim h‘_c re e e(“")h'x

h—-0

Tofera)
hlg‘o e"‘-)

-1
2 ar s&
KS'mce g +ar +ar- heee

21
nh ""1 s h ,..E—f"’- . =2)
= lim h& X gy &91‘:_‘. ;o

"
0

el —1 )

:.-:C2 -1

¢ that fin .
7.2 we 00eTY ¢ have
o ""”’{“’};’f zlelr Q 2\?6 o his difficuly ¥
difficult. In OF
which states that inuous in [

< If flS
Theorem 1 ¢ F(b) —F(ﬂ)

f x) dx = L

I
eF(b) @i

The differenc
R

orw(xﬂt;

if(x)
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v.;_ :?-.: :_'-\‘\\f\:j“ elis us [n?."
- (Vahwe of antiderivative at the upper limig b)

- ___

MODULE. V |iawords ©

Calculus [f(x)dx
. (Value of the same antiderivative at the lower Jiy 1)

!
r 492

2 X

’\t{\ "/‘_““/

. e
i

Solution :
1

—— — T

Evaluate the following

(b) fcz" dx
0

wa)a

(a) | cosx dx
0
Salution : We know that

j cosxdx =sinx + ¢
2 =

fcosxd.\’ =[sinx}g
0

—_ : T[ .
-sm-z- =Sl =] 4 4

fexdxz[L .
2 [ [f eVdx =c"]

0

_ ( et~
— -'_5-_.
Theorem 2 . |r f
i land g are copyj uncti
fnuous functions define in [a, b) and ¢ j 1
S aeconstant then,

. b b
0 Jer(xyx =cf (x)dy

b
1] b ’
(i) ;f(f(x)w(x)]dx =[x )y -ffg(.\')d\'

b

(i) f[f(")*g(")}""=}:"(-“)“X ‘_;:8(\')'
u o

‘ a
Ly} MATHEMATICS
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MODULE -V \
Calculus

2 2 2
= 4§x2c\x —SS xdx + 7‘\ dx
0 0 0

= 4.&%-&— S\%—\l; Mxh
Ao

_32 _j0+14

=

s
3

)dx asme'ﬁnﬁtofsm'ﬂ- 2.

5
+1
Find So(x
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MODULE.v
Calculus

v 1d be as follows : | | .
the steps conld priate substitution 1o reduce the given integral to
(1) Make appropri:

n ¢ AL /vl ,- h’C.
Wiryte the inlegr? ] in terims of the new na .
A ' . H e
] I ['I'lf{‘ the ncw ir'lh‘ﬂ.'.‘lﬂ(’ “’I!h e p(,‘(,l fo ”I new v, "m' l )
(”) nlegri . .‘; . -c
’ Chan fh(.' ””"f. { ('(‘ﬂﬂhnjf'y i "(, ""(, 'hc dlncrcncc ”"'h
(m hange S Ik a

€

alues at tha
Upper
and |

limits

‘)’;(Qr

Note : 1t we don't ehange the Timit with respect to the new vari
aore ;i - v . .
resuhstitute for the new variable and write the answer in origing

the anewer thus obtained at the given limits of the integral,

3
F; X
— dx

Solution : Let 1+ x2 =1

nh!c then alter inte
il variable, Find the v-gra”n:'

9 ligg rif

= Lllog1o
S llog O-—Iog5]
> —1-10 2
Example 275 Evaluate the f‘oHoWing :
7 3 > ‘
si
@ nx dx a 2 sin20 2
o1+ cos? ()f' “ dx
O31:14(9+cos46 (C)f5+4
o 3 Cosx
tion : (@) e COSX=t thepn Sinxdi= . 4
=-dt
Whenx=0, (=land x = T

b= '
2 0. As x varies from () to &

X { varieg from 1 to 0.
Sinx

T —dx = |
0!t coscy —}"mfdt = '{tan lt}l

gy
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- ':i MODULE.V \
: Calculus 3

«in20 40 :g sin .
0

) )
(sm 04 cosl 0\ ~2sin? Oeoa! 0

X
2‘ sin 20
1 = 2sin? O cos? ©

d0
0

&
7S $in20d0

— . 2 _ R 2
01—2sm B(\ sin 0)

‘)' : = 1 in20d0 = dt
. 0 0 dt 1e. sin
-SiﬂBCOS d N |
- = Qg =— t=1. As Bvaﬁes&om Oto-,thcncwmabc vnncsf'tom
=0.t Oand ’ ,

Then

when ©

0to - \ 1 at
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2 X
] —tan E‘
(c) We know that cosx = ———

| nda ———————
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| f +b d
dX‘Sf(a ) dx

1*1_(‘\')

) d‘(’SY(X)dx +§f(2n X )dx
\I(\) 0

| _ (f(a =x)dx
\\(\)d‘( %

0 0, iff(?.a-x)= £(x)

:ii.(,\-) dx = 73 f(x)dx, iff(2a-x)=£(x)
' 0

0 if f (x )isanoddfunctionof x

S f(x)dx= 2§f (x)dx, iff (x )isanevenfunctionof x

'\-ﬂﬂ -4

finite int tegrals may be evaluated easily with the help of the above stated proper-
nl
Many of‘i~1 cgfﬂd have been Very difficult otherwise. e e
o roperties in evaluating definite integrals will
I e use Of mese p
Examp\CS
Eﬂmp\e WELE] Show that
5 ‘ . TE_._}.—-dx =1
2 o =
(a) Slog | tanx|{dx = 0 () 01 +sin
0
- (@)
[ dx
Solution: (@)let 1= S log | tanx|
0

| et
= f a _x)dx,weg
Using the property gf(x)dx !) (
0

1=

1og(tan( “\\\\J dx

l
7
Scanned with CamScanner
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' ‘*“‘~~-‘-\l\.1i |
L )

MODULE. v

Calculus

: e
[ og (tan x ) TN

‘\
{ logtanxdx

“ -llu-‘ ”

i}

N
[=0 or Jlog | tan X[dx =
0

S X
/—_~_d\
v l«-wn\

Ihf-—-\;—-d\
I—\m\ (l)
e - N a
I= b3 T-=x a
.-_\\_ ’ .. » . o
(g S IS o) o
0
£ T—Xx
=[“‘1--d\‘
61+smx (ii)
Adding (1) ang (1)
1\(4- x
2] = f——h.-_t:_}d\
I+sm\(

or 27 = ’f I-—sm\
1—sm~

T

_ 2
= cf(sec X -tnn.\'sccx)d.\'
0

= rr[t:mx = secx |7
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4 3 | MOUULE.V

: 2 . Calculus
‘ Slnx dx (b) S Siny ~ oy
7 X
'ﬁ’f*l?o—— o1+ Sinxcoeg X '

| it
0 x
2§ sin x A
=\Tm - &
@ 1 A Jsinx +cosx ()

= |\ F—7--cT"T"——o
0 0 s'm&%—x\ﬁ- cc‘§\£2 )\()

(Using the property !f(x)dx = Sf(a -x)dx),
0 0

\JCOSX (ﬁ)

________._—-dx

Joosx + Jsinx

c,....--.ul"

g (08 @, WO B

T\

ol + ook
B

b.)
ot—-—IN‘:‘

|
e

=

&

1|
—
>4
cw A
1\
A

o,
W
1A

>\3a

\

Joink__dx
, cos¥ .
M’ ®

2 i
Scanned with CamScanner
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COSX — Sinx
.._0—...dx
l+cosxsinx

]
S|y

Adding (1) and (ii), we get

L
W 2
"j SInX = Cosx J' OSX—SH’IX
2 0 +smxcosx

I+sinxcosx

T
o j’i SiNX — COSX + cosx '-sin X
0

l+sinxcosx ts
=0
B =0 | ‘
|Example 27,1 X i
| Example 27,10 Evaluate'(-a)__{;_Hx_,_dX (b) {]xfl‘dx
[

Solution : (a) Here of ( ) =
] +x2

f(_x)__xe"‘ oo

14 x2
.=‘—f(x)‘
f(x)isanoddﬁJnCtionofx, |
'7- xe"2 ‘
_51"'

3
) [[x +1[dx
-3

Ix"'ll“—‘{x +Lifx > -
| —x—-lif'x<'_1

j{x+1 dx = 1/d |
{[X +f X +f}x lf{ X, usmgpropeny(lu)

——

g MATHEMATICS
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'H;‘”iﬁ': el X 3 | k! v
:\‘\,-J, i X —1)dx " X ‘ MODULE'V h‘x_
, L( &( 1)dx Calculus \
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—-—[In (sint)dt
§-

=52/ log(sint)dt,
0

r:j‘_

-

1 2
o J— 1 ‘.
= = ....[ log (sinx ) dt
20
o I’ =1
] ""H-.;--;;:-
futng s vakue in (ml we get
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soce that fand g are

0O COMtmIon
v Lo bYthatis, the cunve ye
v the question 18 hew :
condoand on the sidey

R
AN D .
WHON 00 an inte, BN

f(x) i |

'n ﬁm‘ N ‘ ’(’:‘ Ot Cromg lll‘.t!(fr ﬂvp CUrve v = g4 (

the » ¢ SR RTaver[a b |

“ o ?N Fégon t"l'“n'!'!'fl' ahove by o = ¢ i [“ ’ ‘
YX=aady«h SR TRy T ), Below b
pam wht hﬂppmb, when the Pt Ve y = £ (1) nfer

e left hnnd \\mm(\m-\. g = Ll

ervecta the lower cripys « -
. = NTWETCHIVE ¥ = g (1) of enthen
A, the i hard b mdary € = by or ety ’ |

1740 Aren Bounded by the Curve,

wich that £ ( o EEIES

Y

-avie and the Ordinates

1-:9‘ AR he “\C‘ turve y = f(x) and CA, DB the two ordinates af « = a and € = b respectively
Suppose y = §(x) is an increasing fimction of % in | |

!
the mterval 3 < x < ).

Let P (x, y) be any point on the curve and
Q(x « dx, v+ dy) ancighbouring point on it.
Draw their ordinates PM and QN,

Here we observe that as x changes the arca
(ACMP) also changes. Let

A=Area (ACMP) ©
Then the area (ACNQ)= A + 6A .
The area (PMNQ)=Area (ACNQ)-Area (ACMP)

= A+ 0A - A =0A.
Complete the rectangle PRQS. Then the area (PMNQ) lies between the areas of rectan

PMNR and SMNQ, that is
5A lies betweeny 8 xand (y + dy)ox

éé— les between y and (¥ +8Y)

= OX

3 and oy - 0.
In the limiting case when Q - P,0x Qand 0y

lim (y +90Y)
lim B2 lies between y and g0
5x—0 OX
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MODULE -V
Calculus

' / Aved when x = b) = (Area when x ~ 5)
[ (AT N
Area (ACTIB) - 0

Area (AC HH‘

" & . Ay
{..I',,-' {ll'l l:(\ )

(2]
' lod by the curve y = £ (x), the x-axiz and the ordinates « = a X=hig
s T s NONY b 1 \

1,
”f(’; ) dx j}d'.

n

here v = £(0) i a continuous single valued fimetion and y does not ch
WY F A
A S X _' }’

| b ek Tind the area bounded by the curve y =

Solution : The given curve is y = x

ange sign in the ey

X, x-axis and the lines =0, x=3

A V4
. ¥Y=x
Required area bounded by the curve, x-axis and
the ordinates x = 0, x = 2 (as shown in Fig.27.7)
2
i fxdx
0
7 12
1 x° -~ o - %
2 1, Fig. 27.7
. x=0 X=2
=2~ 0= 2 square units
Exampic 27,13 BNE area bounded by the
curve y =

e*, X-axis and the ordinates x = () and x =g > ().

Solution ; The given curve js y e*.

" Required ares bounded by the CUIVe, X-axis and the ordinates x = () X=2ais
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le 27.{41_ Findtheareab = !
| ounded by the curve ¥ = ccos % J»X-axis and the ordinates

f; \5017‘:&’ 2ascen .

r'

| golution : The given curve is y = ccos(i)
8

Notes

Required area = | ydx

S ey, 23

=}ccos(%\)dx

0

-#[n()]
«#{5)-m)

2.0 2 ;

= C” sin ° square units

| (Rt FYAL] Find the area enclosed by the circle x2 + y? = a?, and x-axis in the first
quadrant.

Y
Solution : The given curve is x2+y% = a? which “‘ ©.3)

is a circle whose centre and radius are (0, 0) and a
respectively. Therefore, we have to find the area 2+ y2= a2

enclosed by the circle x2 + y% = a2 , the x-axis
and the ordinates x =0 and x = a.

a (0.0) o

xl < rd

Required area = I ydx ° (a.0)

0

a

= I 3.2 "Xz dx ,

0
(-+ y is positive in the first quadrant) ~L ¥

2 a
= [_’E.Jaz — X%+ %—-sin“l (i)l
2

d

2 az |
~ 04+ sin'1-0——sm 0
2 2

_ar ( sin'1 1 -—-11:5,9&11"l 0= 0)
T 22

— —— square units l
4 7]
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MODULE . v

Calculus

m‘

(1) xy = ¢

and the curve

b

CHECKYOR LROGRESS 2758

Find the area bounde by the Curve

= R T |
(Y = log, X,x =a,x =D, |

) Here we have to find the areq bounded by the -
Solution : (i) Here

2
Cc
- " or

() 77
CSlintan:

. ey ¢ V"Lj‘"
R the x-uxis, ordinatey and the follo in
Find the aren bounded by - \
X=a,X=Db, a>b>0 Cupy

axis, the ordinalcs X =

(ra>p given)

= x2, x-axi and the |ines X=0,x=D
Find the are, bounde by the curve y=3

the lines x = 0 gng y - 3
V

X, X-ZIX].S and

MATHEMATIOS
er
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Find the area bounded by 1y Curve

B l L |
+ X=0%19 and (e ordinates x = ()

VEX™ a0 0
Find the are

a bounde y
Tby the Xeaxis, the curve y = ¢ gin( * |
nd x = ¢ and the rmhn:irm %=

27.4.2. Area Boundeq by the Cury

Let AB be the cupve x =
be the abscissae g Y= y=dregpectively,  ¥|D

Let P (x, y)be any point on the curve and let

QX +8x, y+ Sy) be a neighbouring point In

on it. Draw PM and QN perpendiculars on / Plx )
A

ex=f

(¥) between y-axjy and the Lines y
f(y) and 1ot CA, DB

e ym( Notes

g Olx sk, =]

y-axis from Pand Q respectively. As y changes, ¢
the area (ACMP) also changes and hence clearly
a function of'y. Let A denote the area (ACMP), v
then the area (ACNQ) will be A +3A. ° Fig. 27.9

The area (PMNQ) = Area (ACNQ) - Area (ACMP)= A +BA — A =06A.

Complete the rectangle PRQS. Then the area (PMNQ) lies between the area (PMNS) and the
area (RMNQ), that is,

SA liesbetween x § y and (x+38x)8y

SA
= g lies between x and x +8 x

In the limiting position when Q — P, §x — 0 and dy = 0.
dA

ine 4 lim (x +8x
61;20 = lies between x and ax—m( )

dA _
dy
Integrating both sides with respect to y, between the limits ¢ to d, we get
d

d dA
_[xdy - {E; dy

X
=

d
=[Al; )
= (Area when y = ) — (Area wheny = c)
= Arca (ACDB) - 0

= Area (ACDB)
fady =[1) @l
= Xdy = :
Hencearea  (ACDB) '[ c ‘

e Scanned with CamScanner



MODULE - v [ The arca bounded by the curve x = [y ), the y-axis and the lines y = ¢

CH'CU’US f d

- f-\'d)' or IF(Y)dy
X ‘ c

N where x = f(y ) is a continuous single valued function and
‘ and x do i
| \ v eSﬂOtChaI]geS]gn in the ;
. nt
re a

e . cw ]
RRDIE IR Find the arca bounded by the curvex =y

-aXi i
Solution : The given curve is x =y, L e fines y ~ 0,y =3

= Required area bounded by the curve, y-axis and the Jjn
esy

3 =0,y=3is
=fx dy
0
3 J:
= [ydy — | N
0
. y=3
‘ 3
_| 2
2
0 it Y / e

y' Fig. 27.19

Solutinn . ,
lution : The “quation of the cyrye jg X =

y2

axis and the lineg y=0,y=2

=fyzdy=[—}i]2

. Required ares bounded by the curve y-

0 3 0
2B

3
_ 8
~—'3- Square unijtg

P —
| Example 27.19 Bt the

area ]
enclosed by the ¢yl X2+ y2 < 22 and y-axis i
= -axis in the first

(L

MATIIrya: me
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MODULE -V
Calculus

s fven s x2 4+ yi = e n ol ;
_.-nhl“"“ . The given curve 18 x* + y* = a2, which is a circle whose cenfre 1S (0, 0) and radius

: Tperefore, We have to find the area enclosed by the circle x2 +y? = a2, the y-axis and the
pcissacy = 0,y=a

y
4\

Required arca = ! x dy (0.9) Notes
0

0 X< f
N (a, 0)
(because X is posive 1 first quadrant)

a
=S a2 -y? dy
| & \u — X

2 . :
._.X}’. "az v+ E{ sin~" (%ﬂ Fig. 27.11

2 0 y

2 2
a‘t . — T
=0+-—2—sm 11]-Q0——smn 1o

2 .- n
2 _——m; square units ( sin~! 0 = 0,sin h= -2-)

Note : The arca is same a i Example 27.14, e Teason is the given curve is symmetrical
about both the axes. In such problems if we have beenl asked to find the area of the curve, |
without any restriction we can do by either method.

=R TETY Find the whole area bounded by the circle &+ yE =2k,

Solution : The equation of the curve is X* + y? =a’.

The circle is symmetrical about both the axes, SO the whole
area of the circle is four times the area 08 {he circle in the first
quadrant, that is,

Area of circle =4 x area of OAB

2
= 4 _n%__ (From Example 27.15 and 27.19) = o

square units
.
| Example il Find the whole ared of the ellipse
2 2 Fig, 27:12
x* Y
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" both th nt i
g The ellipse i qvmmetrical about ' a in the first quadrant, that is,
u ¥ B

— L

e -tl\'cs imd so the whole

four times the arc

zmuLlRS e ITI ipse = X ared (OAB)
g of the elips
Whole arca of [
In the tirst quadrnt, ‘ l | i O / |
] s d ‘ ~ =
Yoo Rt or Y = —=Va© =X ;
% S T

b- a” ) .
| ’ varies om0 to a
Now for the area (OARB), x varies

Fig.27.13

a
Arca (OAB) = I vdx
0

o
o
=

Hence the whole area of the ellipse
abn

=4 x—

4
= mab, square units

27.4.3 Area between two Curves

Suppose that f(x) and g (x) are two continuous and non-n
such that f(x )2 g(x) forall x e [a, b]
that is, the curve y = f (x)does not cross  under
thecmvey=g(x) for x e [a,b]. We want to

find the area bounded above by y = f(x),
belowby y=g (x), and on the sides byx=a

and x =b,

|
Let A=[Area under y = f (x)] — [Area under :'
y=gx) (1) of =
Now using the definition for the area bounded ‘
by the curve y = f (x), x-axis and the ordinates x = a and x = b, we have
Area under

egative functions on an interval [a, b]

I 4 y=f(x)

Y =g(x)

[ ——— ———

x
I
L
N\
>

a

Fig. 27.14

: e MATHEMATICS
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Pile ={£(x)dx | MODULE-V
’ | Calculus

b
Area under ¥ = g(x) =S g(x)dx
a

_qimi\nf\y,

Using equations (2) and (3) in (1), we get

Notes

b b
A= jf(x)dx -sg(x)(lx

a a

b
el

What happens when the function g has o values also? This formula can be extended by
translating the curves f(x)and g (%) upwards until both are above the s-axis. To do this let-m be
the mininmum value of g (X)on (a, b] (see Fig. 27.15).

g(x)z-m

negativ

= g(x)+m20

Since

A
- (x)

/‘V\\
Arca \
x=1

y—3a Z‘ -
X
y =g

Fig. 27.15

 ————

0|

o noN-nNegative on {a, bl (see Fig, 21.16). It
wween f

m and £(x)+mar
so\k\eateat\be

is unchanged b {ransiation,
x)+m and § (%) +m Thus,
m) )

Now, the functions g( x)+
t the area of a region

‘s intuitively clear tha!

g is the same as the area petweeng(

under y ~[f(x) +m]]-—[ateaundery ={gx) * | |

-+ ons for the arca pounded by fhe curve Y = £ (X), -0 and the ordinates?

and

A =[arcd

b

dx
et +m AU m)
AIeaunderY A
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ODULE. Y, Iy ol
Calculus “w 0 e f{n ) m

4
and Area under ¥

; ;
The equations (6), (7) and (5) give 7

b b ”' th
A = [[f(x) +m ]dx -f[g(x) im Jdx redV
Notes n v 1E
b ! ‘
= [[f(x) =g (x)]dx g

a
which is same as (4) Thus, S0
If £ (x) and g (x) are continuous functions on the interyal Y-
f(x)2 g (x),Vx e [a, b], then the area of the region bounded above b [a, b], an( 4
byy=g(x),onthe left by x =a and on the right by x = b js Yy ="f(x), beloy, (S

b
= [[£(x) -g(x)]dx

|

fExample + %) Find the area of the region b¢ e, =
gion bounded aboye b X+6
Yy bounded be]q
‘ hy W by

y = x2, and bounded on the sides by the lines X=0andx=2.

€quation of the straight line and. .
and' v = 2 ; .
Y= x* 18 the equation of 1,
e

ut the y-axis and orig; ‘
by ths s 5 . 3 i e y-axis and origin the Vertex. Also the region is bounded
> X
2 2
Thus, A=[(x +6)dx - x2dx
0 0
2 2
X 3
= [ — +6x —’i-]
- 3
0
34 |
'L 3
129 M. |
| ATHEMATICS |
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34
MODULE .y

= 73 square units
Calculy

-(he curves intersect then the « ,
. juces to a point, rat} 1€ sides of the region where the
oduc Tather than a vertjcg line segment upper and lower curves intersect

€ area of the region enclosed between the curves y =x? and
Notes

_\‘=X+6.

Solution : We ; :
know that y =x2 isthe cquation of the parabola which is symmetric about the
*+6 is the equation of the straight line which makes an angle

y-axis and vertex is originand y = x
intercepts of —6 and 6 with the x and y axes respectively.

45° with the x-axis and having the
(See Fig. 27.18).

Fig. 27.18

A sketch of the region shows that the lower boundary is y = x* and the upper boundary isy =

%t -x—-6=0

x +6. These two curves intersect at two points, say A and B. Solving these two equations we get

x2=X+6 =
x=3,-2

= (x=3)(x+2)=0 =
Whenx=3,y=9andwhenx=—2,yé4

- The required area = ﬁz[(x +6)-x ]dx

3
2 3
= 5_+6x —%\
2 -2

27 22_)
=—i—‘( 3

- }_2.5. square units

6
nves y =
f the region enclosed between the ¢
a0

2 is the equafl

ind the are
i on of the parabo

. We know that y =%

Solution

P

=X.
X2 andy

 about the
Symmemc ab

PRt | lA’I‘If.'S
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- % Onie
v-axis and vertex 8 onNg

-

. 2ke
wmking an angle of 457 W

¥l peeey Yy €

} shat the lower boundary 18 y =
(YW SN T 1

‘the straight line passing thry,
s v = x i the equation of the [

3 A L
"') he v-avxis (sce Fig. 27.19).

2

= Mg
.
12h the ml'wfltﬁ"'1
1]’\1

and the upper houn -

. 3 ~ 3 | " ' L
~ VI b ves intersect at two points O and A. Solving these ry,, '-"lu.nmn' "
Ne V= X THese o cunv FV 4
t(x=1)=0
x =0.1 TE
y = A
t)=x.g(x)=x%a=0andb =1
¥ l‘_‘ reguired arca ————e e N
1, , o T,
- ’(’I( RO )d\'
[ 2 37!
:[L_'_‘_] Fig. 27.19
2 3 Jo
I 1 1 its
3T T=— squarc un
2 3 6 N
Find the area bounded by the curves y? = 4x and y=x.
Solution : W, ' 2 _ . .
,. mumr: mm_: I:c;: ‘&:;_ : = 4? utl:e equation off" the parabola which js Symmetric about the
U @ongm is the vertex, y = js € equation o the straight line ing throy
making an angle of 45° with the x-axjs (see Fig, 27.20). pesing Bh originang
+ SKetch of the region shows ' Sy = :
T 18 that melo“crboundaxyxsy X and the upper boundary i ¥ =dx.
] wves intersect at two points O and A Solving these two equations, we get
-5
y- _ ¥=x
7 ~Y=0 o
= ¥Y(y-4)=0 A y? = dx
= y=0,4
\\heny=0,x=0and wheny=4,x==4.
Here ’l‘ O a
f(x)= (4x) B(X) = x,4 = 0,b =
Therefore, the required ares jg L
o )
- f 2x% —x Jx Fig, 27,20
0
I,
= ixz - -}i:.
3 2
o 0
! - Scanned with CamScanner



= 2 -8 MODULE-V

3 Calculus
8

—
—

square units

1 =
m Find the arca common to two parabolas ! = day and y° = dax,

solution : We know that Yz = 4ax and x? = day arc the equations of the parabolas, which

Notes

are symmetric about the x-axis and y-axis respectively.

Also both the parabolas have {heir vertices at the origin (see Fig. 27.19).

is X2 =4 the unper boundary is
A sketch of the region shows that the lower boundary is = = {ay and the uppe

a . CS l (‘ 4 tl I

)r
" ¥ = 4ay
4
16a
(x3 —64a%) =0

= x(x 6 )

x = 0,42
=

Hence the two parabolas intersect at point

(0, 0) and (4a, 4a).
- 121
z = db = 43 F‘g--
Here f(x)=J4ax,g(x)=—;‘;,a 0an

Therefore, required area

4a X?'
— |dx
o S\ﬁa—- 4a
0

3 An
0y 3
g 2ax? X
- 3 12a Jo

320 160
.-__.———-—‘
== =y

16 a'z' square units

— p—
—
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Coleulu u CHECK.YOURPROGRESS 2748
[

. )
1. Find the aren of the circle x? 4 y? w9

' \ 2 2
— - inse 2= 4 Lo
2 Find the aren of the ellipse :1 -
h’ﬂ'l" -y
2
X_ .Y
I ey 1 Ve " GO e e S oy l
Find the area of the ellipse TRET:
2 x?
Find the area bounded by the curvey y? = daxan dy = —_4
' a

Find the area bounded by the curves y?2

= 4xandx2 = 4y

Find the arca enclosed by the curves Y =x2and y =x 0

In [a, b], then
ff(x)dx=F(b) —F(a)
If fand & are continuoys jn [, b] and ¢ g a constant, then
b b
0) fcf(x)dx= ff(x)dx
b b
(i) j[f(x)+g(x)]dx =[(x )dx g (x)dx
a a a
b b b
(i) f[f(x)-—g(x)]dx =ff'(x)dx -—fg(x)dx
a a a
®*  Thearea bounded by the curve Y =f(x), the x-

axis and the ordinates

b b
X=a,x=b s ff(x)dx orfydx
. a

JMA WA & § AT Y IR ——
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| n‘f(x)mdg(ﬂmﬁmﬁm“nﬁmﬁmmlhcin?cml[n,h]nmlf(t)zg(x).ﬁnﬂ

MODULE -V
xela .b]. then the area of the region bounded above by y = £(x), below by y = g (x). on Calculus
the left by X = a and on the right by x = b is

b
[IE() =g (x))ax

SUPPORTIVE WEB SITES

http:/ www.wikipedia.org

- hrrp:-"mmh\\'nrld.wn[fmm.cnm
Al ERMINAL EXERCISE]
a1

imit of sum.
Evaluate the following integrals (1 10 5) as the limito

b
?xdx " ‘ixz dx 3, js'mxdx
1. ! 2. J ]
2
4 li-cosxdx 5. “xz +\)dx
3 0

Evaluate the following integrals (61023)

9 11 . 2sccmu\:&
6. ]’ a2 —x2dx 7. Sos'm?.xdx - .%
0
LY
T G wie
9 jcos Xxdx 0
0
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j\lnﬂkrn\d\ ;o_f?nn(1*
0

nrz(l

gin® x
,._* — ~dx 22.
, 81NX 4 cosx

-J‘-q_‘.."

cosx )dx

+ tan x )dx
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B xsvens:

(HECK YOUR PROGRESS 27,1

|

35 |
2 2.c"“c‘
3 “J’L\ " R i
S ) Y & d) ==
:h (b) (‘1)4 (d) 3
CHECK YOUR PROGRESS 27,2
- | 1
1. c——z-l- y Z}tan"-‘}- 3, glog() L:Etan L[5
PR 5.2313{5—-E 6.% 7, =3 log?
12 10 2]
8.0 9.0 0. 3|3 4

CHECK YOUR PROGRESS 27.3

2a _|

8 27 , . .
3 i ) ————sq. units
L 3sq.umts 2. 2sq.umts 3, > sq. uni
4. c? (1 - CO0S %\)
CHECK YOUR PROGRESS 27.4
] 9r Sq. units 2. 67 Sq. units 3. 20% Q. UniS
18 2 its 5. 18 5. units 6. 5 s units
4, —3-3 §q. un 3 >
TERMINAL EXERCISE
p? —a’ 2 ‘_33_:_“3. 3. cosa —cosb
L T t3
2
ma’
5. 2 Ly
4, sinb—sina K

::..__
_
Y
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-
p
16 ,
16, —_ 2 4
15
19. ~nlog
24 —~Jlog?2
k. 0g4
8

14,1 ~log 2

64
17. —
231

ro
S
-&INN

—

23. —

|
12, Rl()g%
15. £

3

2
18, =~ = lop 2
2 B

1
21. :f—-zlog(l

24.78
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